Détail de l'auteur
Auteur Gengchen Mai |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Narrative cartography with knowledge graphs / Gengchen Mai in Journal of Geovisualization and Spatial Analysis, vol 6 n° 1 (June 2022)
[article]
Titre : Narrative cartography with knowledge graphs Type de document : Article/Communication Auteurs : Gengchen Mai, Auteur ; Weiming Huang, Auteur ; Ling Cai, Auteur ; et al., Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] ArcGIS
[Termes IGN] cartographie ancienne
[Termes IGN] cartographie par internet
[Termes IGN] données spatiotemporelles
[Termes IGN] géovisualisation
[Termes IGN] modèle d'ontologie
[Termes IGN] ontologie
[Termes IGN] réseau sémantique
[Termes IGN] SPARQL
[Termes IGN] système d'information géographique
[Termes IGN] web sémantiqueRésumé : (auteur) Narrative cartography is a discipline which studies the interwoven nature of stories and maps. However, conventional geovisualization techniques of narratives often encounter several prominent challenges, including the data acquisition & integration challenge and the semantic challenge. To tackle these challenges, in this paper, we propose the idea of narrative cartography with knowledge graphs (KGs). Firstly, to tackle the data acquisition & integration challenge, we develop a set of KG-based GeoEnrichment toolboxes to allow users to search and retrieve relevant data from integrated cross-domain knowledge graphs for narrative mapping from within a GISystem. With the help of this tool, the retrieved data from KGs are directly materialized in a GIS format which is ready for spatial analysis and mapping. Two use cases — Magellan’s expedition and World War II — are presented to show the effectiveness of this approach. In the meantime, several limitations are identified from this approach, such as data incompleteness, semantic incompatibility, and the semantic challenge in geovisualization. For the later two limitations, we propose a modular ontology for narrative cartography, which formalizes both the map content (Map Content Module) and the geovisualization process (Cartography Module). We demonstrate that, by representing both the map content and the geovisualization process in KGs (an ontology), we can realize both data reusability and map reproducibility for narrative cartography. Numéro de notice : A2022-946 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s41651-021-00097-4 Date de publication en ligne : 02/02/2022 En ligne : https://doi.org/10.1007/s41651-021-00097-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99869
in Journal of Geovisualization and Spatial Analysis > vol 6 n° 1 (June 2022)[article]Deeply integrating linked data with geographic information systems / Gengchen Mai in Transactions in GIS, vol 23 n° 3 (June 2019)
[article]
Titre : Deeply integrating linked data with geographic information systems Type de document : Article/Communication Auteurs : Gengchen Mai, Auteur ; Krzysztof Janowicz, Auteur ; Bo Yan, Auteur ; Simon Scheider, Auteur Année de publication : 2019 Article en page(s) : pp 579 - 600 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] connecteur logiciel
[Termes IGN] graphe
[Termes IGN] ontologie
[Termes IGN] réseau sémantique
[Termes IGN] système d'information géographique
[Termes IGN] web des donnéesRésumé : (Auteur) The realization that knowledge often forms a densely interconnected graph has fueled the development of graph databases, Web‐scale knowledge graphs and query languages for them, novel visualization and query paradigms, as well as new machine learning methods tailored to graphs as data structures. One such example is the densely connected and global Linked Data cloud that contains billions of statements about numerous domains, including life science and geography. While Linked Data has found its way into everyday applications such as search engines and question answering systems, there is a growing disconnect between the classical ways in which Geographic Information Systems (GIS) are still used today and the open‐ended, exploratory approaches used to retrieve and consume data from knowledge graphs such as Linked Data. In this work, we conceptualize and prototypically implement a Linked Data connector framework as a set of toolboxes for Esri's ArcGIS to close this gap and enable the retrieval, integration, and analysis of Linked Data from within GIS. We discuss how to connect to Linked Data endpoints, how to use ontologies to probe data and derive appropriate GIS representations on the fly, how to make use of reasoning, how to derive data that are ready for spatial analysis out of RDF triples, and, most importantly, how to utilize the link structure of Linked Data to enable analysis. The proposed Linked Data connector framework can also be regarded as the first step toward a guided geographic question answering system over geographic knowledge graphs. Numéro de notice : A2019-255 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12538 Date de publication en ligne : 11/06/2019 En ligne : https://doi.org/10.1111/tgis.12538 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93013
in Transactions in GIS > vol 23 n° 3 (June 2019) . - pp 579 - 600[article]