Détail de l'auteur
Auteur Blake Regalia |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Computing and querying strict, approximate, and metrically refined topological relations in linked geographic data / Blake Regalia in Transactions in GIS, vol 23 n° 3 (June 2019)
[article]
Titre : Computing and querying strict, approximate, and metrically refined topological relations in linked geographic data Type de document : Article/Communication Auteurs : Blake Regalia, Auteur ; Krzysztof Janowicz, Auteur ; Grant McKenzie, Auteur Année de publication : 2019 Article en page(s) : pp 601 - 619 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] DBpedia
[Termes IGN] données localisées
[Termes IGN] entité géographique
[Termes IGN] graphe
[Termes IGN] relation topologique
[Termes IGN] requête spatiale
[Termes IGN] réseau sémantique
[Termes IGN] web des donnéesRésumé : (Auteur) Geographic entities and the information associated with them play a major role in Web‐scale knowledge graphs such as Linked Data. Interestingly, almost all major datasets represent places and even entire regions as point coordinates. There are two key reasons for this. First, complex geometries are difficult to store and query using the current Linked Data technology stack to a degree where many queries take minutes to return or will simply time out. Second, the absence of complex geometries confirms a common suspicion among GIScientists, namely that for many everyday queries place‐based relational knowledge is more relevant than raw geometries alone. To give an illustrative example, the statement that the White House is in Washington, DC is more important for gaining an understating of the city than the exact geometries of both entities. This does not imply that complex geometries are unimportant but that (topological) relations should also be extracted from them. As Egenhofer and Mark (1995b) put it in their landmark paper on naive geography, topology matters, metric refines. In this work we demonstrate how to compute and utilize strict, approximate, and metrically refined topological relations between several geographic feature types in DBpedia and compare our results to approaches that compute result sets for topological queries on the fly. Numéro de notice : A2019-256 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12548 Date de publication en ligne : 26/06/2019 En ligne : https://doi.org/10.1111/tgis.12548 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93014
in Transactions in GIS > vol 23 n° 3 (June 2019) . - pp 601 - 619[article]