Détail de l'auteur
Auteur Qiang Zhou |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A novel regression method for harmonic analysis of time series / Qiang Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 185 (March 2022)
[article]
Titre : A novel regression method for harmonic analysis of time series Type de document : Article/Communication Auteurs : Qiang Zhou, Auteur ; Zhe Zhu, Auteur ; George Xian, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 48 - 61 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse harmonique
[Termes IGN] détection de changement
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-SWIR
[Termes IGN] modèle de régression
[Termes IGN] réflectance
[Termes IGN] régression harmonique
[Termes IGN] série temporelle
[Termes IGN] variation saisonnièreRésumé : (auteur) Harmonic analysis of time series is an important technique to reveal seasonal land surface dynamics using remote sensing information. However, frequency selection in the harmonic analysis is often difficult because high-frequency components are useful for delineating seasonal dynamics but sensitive to noise and gaps in time series. On the other hand, it is challenging to obtain temporally continuous satellite data with high quality because of atmospheric contamination. We developed a novel regression method named Harmonic Adaptive Penalty Operator (HAPO) for harmonic analysis of unevenly distributed time series. We introduced a new penalty function to minimize unexpected fluctuations in the model, which can substantially reduce the overfitting issue of regression in time series with temporal gaps. Specifically, the new penalty function minimizes the length of the model curve and the value range difference between the model and time series observations. We compared HAPO with three widely used regression methods (OLS: Ordinary Least Squares; LASSO: Least Absolute Shrinkage and Selection Operator; and Ridge) with different scenarios using Landsat time series data across the United States. First, we evaluated methods using Landsat surface reflectance time series within a single year. HAPO showed small and consistent monthly Root Mean Square Deviation (RMSD) values, in which most of the time RMSD values of predicted reflectance were less than 0.04. More importantly, HAPO showed consistent and less bias given varying density and irregularity of time series. Second, we evaluated methods using multi-year time series and the result suggested that HAPO was a better predictor of relatively short time series (less than4 years) with steady small RMSD values. When a longer time series (≥4 years) was used, all four methods disclosed similar RMSD values, but HAPO outperformed other three methods when there were temporal gaps. Last, we preliminarily tested how regression methods affected change detection and classification accuracy. HAPO showed the highest change detection accuracy of all tests in terms of F1 score when using the change threshold of 0.9999. In classification, HAPO produced the highest accuracy for short time series segments (one- or two-year time series). In contrast, all methods reached similar accuracy for 5-year time series. These results suggest that for areas that have large seasonal observation gaps or for time series that have less than 4 years records, HAPO can provide more consistent and accurate analytical results than other regression methods for harmonic analysis of time series. Numéro de notice : A2022-133 Affiliation des auteurs : non IGN Thématique : IMAGERIE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.01.006 Date de publication en ligne : 21/01/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.01.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99729
in ISPRS Journal of photogrammetry and remote sensing > vol 185 (March 2022) . - pp 48 - 61[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2022031 SL Revue Centre de documentation Revues en salle Disponible A novel method for separating woody and herbaceous time series / Qiang Zhou in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 7 (July 2019)
[article]
Titre : A novel method for separating woody and herbaceous time series Type de document : Article/Communication Auteurs : Qiang Zhou, Auteur ; Shuguang Liu, Auteur ; Michael J Hill, Auteur Année de publication : 2019 Article en page(s) : pp 509 - 520 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Afrique australe
[Termes IGN] bois
[Termes IGN] extraction de la végétation
[Termes IGN] image à haute résolution
[Termes IGN] image Ikonos
[Termes IGN] image Landsat-SWIR
[Termes IGN] image Terra-MODIS
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] plante herbacée
[Termes IGN] savane
[Termes IGN] série temporelle
[Termes IGN] variation saisonnièreRésumé : (auteur) Mapping the spatial distribution of woody and herbaceous vegetation in high temporal resolution in savannas would be beneficial for modeling interrelationships between trees and grasses, and monitoring fuel loads and biomass for livestock. In this study, we developed a frequency decomposition method to separate woody and herbaceous vegetation components using Normalized Difference Vegetation Index (NDVI) time series. The results were validated using fractional cover data derived from high-resolution images. The validation revealed a close relationship between our decomposed NDVI and corresponding fractional cover (R2 = 0.55 and 0.64 for woody and herbaceous components, respectively). We examined the spatial and temporal patterns of the decomposed NDVI, where woody and herbaceous NDVI showed different responses to precipitation. The methods proposed in this study can be used to separate the woody and herbaceous NDVI time series as an alternative approach for monitoring woody and herbaceous vegetation interrelationships related to climatic drivers. Numéro de notice : A2019-259 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.7.509 Date de publication en ligne : 01/07/2019 En ligne : https://doi.org/10.14358/PERS.85.7.509 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93062
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 7 (July 2019) . - pp 509 - 520[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019071 SL Revue Centre de documentation Revues en salle Disponible