Détail de l'auteur
Auteur Markus Immitzer |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes / Anna Iglseder in International journal of applied Earth observation and geoinformation, vol 117 (March 2023)
[article]
Titre : The potential of combining satellite and airborne remote sensing data for habitat classification and monitoring in forest landscapes Type de document : Article/Communication Auteurs : Anna Iglseder, Auteur ; Markus Immitzer, Auteur ; Alena Dostalova, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 103131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte thématique
[Termes IGN] cartographie écologique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données Copernicus
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt
[Termes IGN] habitat (nature)
[Termes IGN] habitat forestier
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] modèle numérique de surface
[Termes IGN] protection de la biodiversité
[Termes IGN] site Natura 2000
[Termes IGN] Vienne (capitale Autriche)Résumé : (auteur) Mapping and monitoring of habitats are requirements for protecting biodiversity. In this study, we investigated the benefit of combining airborne (laser scanning, image-based point clouds) and satellite-based (Sentinel 1 and 2) data for habitat classification. We used a two level random forest 10-fold leave-location-out cross-validation workflow to model Natura 2000 forest and grassland habitat types on a 10 m pixel scale at two study sites in Vienna, Austria. We showed that models using combined airborne and satellite-based remote sensing data perform significantly better for forests than airborne or satellite-based data alone. For frequently occurring classes, we reached class accuracies with F1-scores from 0.60 to 0.87. We identified clear difficulties of correctly assigning rare classes with model-based classification. Finally, we demonstrated the potential of the workflow to identify errors in reference data and point to the opportunities for integration in habitat mapping and monitoring. Numéro de notice : A2023-128 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103131 Date de publication en ligne : 12/01/2023 En ligne : https://doi.org/10.1016/j.jag.2022.103131 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102512
in International journal of applied Earth observation and geoinformation > vol 117 (March 2023) . - n° 103131[article]Estimating stand density, biomass and tree species from very high resolution stereo-imagery – towards an all-in-one sensor for forestry applications? / Fabian E. Fassnacht in Forestry, an international journal of forest research, vol 90 n° 5 (December 2017)
[article]
Titre : Estimating stand density, biomass and tree species from very high resolution stereo-imagery – towards an all-in-one sensor for forestry applications? Type de document : Article/Communication Auteurs : Fabian E. Fassnacht, Auteur ; Daniel Mangold, Auteur ; Jannika Schäfer, Auteur ; Markus Immitzer, Auteur Année de publication : 2017 Article en page(s) : pp 613 - 631 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse comparative
[Termes IGN] biomasse forestière
[Termes IGN] densité de la végétation
[Termes IGN] données lidar
[Termes IGN] espèce végétale
[Termes IGN] image à très haute résolution
[Termes IGN] image aérienne
[Termes IGN] inventaire forestier (techniques et méthodes)
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) The estimation of various forest inventory attributes from high spatial resolution airborne remote sensing data has been widely examined and proved to be successful at the experimental level. Nevertheless, the operational use of these data in automated procedures to support forest inventories and forest management is still limited to a small number of cases. The reasons for this are high data costs, limited availability of remote sensing data over large areas and resistance from practitioners. In this review the main aim is to stimulate debate about spaceborne very high resolution stereo-imagery (VHRSI) as an alternative to airborne remote sensing data by presenting: (1) a case study on the retrieval of stand density, aboveground biomass and tree species using a set of easy-to-calculate variables obtained from VHRSI data combined with image processing and nonparametric classification and modelling approaches; and (2) the results of an expert opinion survey on the potential of VHRSI as compared with Light Detection and Ranging (LiDAR), hyperspectral and airborne digital imagery to derive a range of forest inventory attributes. In the case study, stand density was estimated with r² = 0.71 and RMSE = 156 trees (rel./norm. RMSE = 24.9 per cent/12.4 per cent), biomass with r² = 0.64 and RMSE of 36.7 t/ha (rel./norm. RMSE = 20.0 per cent/12.8 per cent) while tree species classifications with five species reached overall accuracies of 84.2 per cent (kappa = 0.81). These results were comparable to earlier studies in the same test site, obtained with more expensive airborne acquisitions. Expert opinions were more diverse for VHRSI and aerial photographs (Shannon index values of 0.94 and 0.97) than for LiDAR and hyperspectral data (Shannon index values 0.69 and 0.88). In our opinion, this reflects the current state-of-the-art in the application of VHRSI for automatically retrieving forest inventory attributes. The number of studies using these data is still limited, and the full potential of these datasets is not yet completely explored. Compared with LiDAR and hyperspectral data, which both mostly received high scores for forest inventory products matching the sensor systems’ strengths, VHRSI and aerial photographs received more homogeneous scores indicating their potential as multi-purpose instruments to collect forest inventory information. In summary, considering the simpler acquisition, reasonable price and the comparably easy data format and handling of VHRSI compared with other sensor types, we recommend further research on the application of these data for supporting operational forest inventories. Numéro de notice : A2017-902 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1093/forestry/cpx014 En ligne : https://doi.org/10.1093/forestry/cpx014 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93196
in Forestry, an international journal of forest research > vol 90 n° 5 (December 2017) . - pp 613 - 631[article]