Détail de l'auteur
Auteur Steven Capelli |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A cross-analysis framework for multi-source volunteered, crowdsourced, and authoritative geographic information : The case study of volunteered personal traces analysis against transport network data / Gloria Bordogna in Geo-spatial Information Science, vol 21 n° 3 (October 2018)
[article]
Titre : A cross-analysis framework for multi-source volunteered, crowdsourced, and authoritative geographic information : The case study of volunteered personal traces analysis against transport network data Type de document : Article/Communication Auteurs : Gloria Bordogna, Auteur ; Steven Capelli, Auteur ; Daniele E. Ciriello, Auteur ; Guiseppe Psaila, Auteur Année de publication : 2018 Article en page(s) : pp 257 - 271 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] Bergame
[Termes IGN] cadre conceptuel
[Termes IGN] données hétérogènes
[Termes IGN] données localisées de référence
[Termes IGN] données localisées des bénévoles
[Termes IGN] format JSON
[Termes IGN] mobilité urbaine
[Termes IGN] requête spatiale
[Termes IGN] réseau de transport
[Termes IGN] segmentation sémantique
[Termes IGN] trace numériqueRésumé : (Auteur) The paper discusses the need of a high-level query language to allow analysts, geographers and, in general, non-programmers to easily cross-analyze multi-source VGI created by means of apps, crowd-sourced data from social networks and authoritative geo-referenced data, usually represented as JSON data sets (nowadays, the de facto standard for data exported by social networks). Since an easy to use high-level language for querying and manipulating collections of possibly geo-tagged JSON objects is still unavailable, we propose a truly declarative language, named J-CO-QL, that is based on a well-defined execution model. A plug-in for a GIS permits to visualize geo-tagged data sets stored in a NoSQL database such as MongoDB; furthermore, the same plug-in can be used to write and execute J-CO-QL queries on those databases. The paper introduces the language by exemplifying its operators within a real study case, the aim of which is to understand the mobility of people in the neighborhood of Bergamo city. Cross-analysis of data about transportation networks and VGI from travelers is performed, by means of J-CO-QL language, capable to manipulate and transform, combine and join possibly geo-tagged JSON objects, in order to produce new possibly geo-tagged JSON objects satisfying users’ needs. Numéro de notice : A2018-646 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2017.1374703 Date de publication en ligne : 21/09/2018 En ligne : https://doi.org/10.1080/10095020.2017.1374703 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93316
in Geo-spatial Information Science > vol 21 n° 3 (October 2018) . - pp 257 - 271[article]