Détail de l'auteur
Auteur Ahmed Ahmouda |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Analyzing the effect of earthquakes on OpenStreetMap contribution patterns and tweeting activities / Ahmed Ahmouda in Geo-spatial Information Science, vol 21 n° 3 (October 2018)
[article]
Titre : Analyzing the effect of earthquakes on OpenStreetMap contribution patterns and tweeting activities Type de document : Article/Communication Auteurs : Ahmed Ahmouda, Auteur ; Hartwig H. Hochmair, Auteur ; Sreten Cvetojevic, Auteur Année de publication : 2018 Article en page(s) : pp 195 - 212 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] catastrophe naturelle
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] Italie
[Termes IGN] Népal
[Termes IGN] OpenStreetMap
[Termes IGN] séismeRésumé : (Auteur) Natural disasters, such as wildfires, earthquakes, landslides, or floods, lead to an increase in topical information shared on social media and in increased mapping activities in volunteered geographic information (VGI) platforms. Using earthquakes in Nepal and Central Italy as case studies, this research analyzes the effects of natural disasters on short-term (weeks) and longer-term (half year) changes in OpenStreetMap (OSM) mapping behavior and tweet activities in the affected regions. An increase of activities in OSM during the events can be partially attributed to those focused OSM mapping campaigns, for example, through the Humanitarian OSM Team (HOT). Using source tags in OSM change-sets, it was found that only a small portion of external mappers actually travels to the affected regions, whereas the majority of external mappers relies on desktop mapping instead. Furthermore, the study analyzes the spatio-temporal sequence of posted tweets together with keyword filters to identify a subset of users who most likely traveled to the affected regions for support and rescue operations. It also explores where, geographically, earthquake information spreads within social networks. Numéro de notice : A2018-643 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10095020.2018.1498666 Date de publication en ligne : 27/07/2018 En ligne : https://doi.org/10.1080/10095020.2018.1498666 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93310
in Geo-spatial Information Science > vol 21 n° 3 (October 2018) . - pp 195 - 212[article]