Détail de l'auteur
Auteur Monica Garcia |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Unmanned aerial system multispectral mapping for low and variable solar irradiance conditions: Potential of tensor decomposition / Sheng Wang in ISPRS Journal of photogrammetry and remote sensing, vol 155 (September 2019)
[article]
Titre : Unmanned aerial system multispectral mapping for low and variable solar irradiance conditions: Potential of tensor decomposition Type de document : Article/Communication Auteurs : Sheng Wang, Auteur ; Andreas Baum, Auteur ; Pablo J. Zarco-Tejada, Auteur ; Carsten Dam-Hansen, Auteur ; Anders Thorseth, Auteur ; Peter Bauer-Gottwein, Auteur ; Filippo Bandini, Auteur ; Monica Garcia, Auteur Année de publication : 2019 Article en page(s) : pp 58 - 71 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] éclairement énergétique
[Termes IGN] étalonnage de capteur (imagerie)
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] nébulosité
[Termes IGN] réflectance spectrale
[Termes IGN] réflectance végétale
[Termes IGN] tenseurRésumé : (Auteur) Unlike satellite earth observation, multispectral images acquired by Unmanned Aerial Systems (UAS) provide great opportunities to monitor land surface conditions also in cloudy or overcast weather conditions. This is especially relevant for high latitudes where overcast and cloudy days are common. However, multispectral imagery acquired by miniaturized UAS sensors under such conditions tend to present low brightness and dynamic ranges, and high noise levels. Additionally, cloud shadows over space (within one image) and time (across images) are frequent in UAS imagery collected under variable irradiance and result in sensor radiance changes unrelated to the biophysical dynamics at the surface. To exploit the potential of UAS for vegetation mapping, this study proposes methods to obtain robust and repeatable reflectance time series under variable and low irradiance conditions. To improve sensor sensitivity to low irradiance, a radiometric pixel-wise calibration was conducted with a six-channel multispectral camera (mini-MCA6, Tetracam) using an integrating sphere simulating the varying low illumination typical of outdoor conditions at 55oN latitude. The sensor sensitivity was increased by using individual settings for independent channels, obtaining higher signal-to-noise ratios compared to the uniform setting for all image channels. To remove cloud shadows, a multivariate statistical procedure, Tucker tensor decomposition, was applied to reconstruct images using a four-way factorization scheme that takes advantage of spatial, spectral and temporal information simultaneously. The comparison between reconstructed (with Tucker) and original images showed an improvement in cloud shadow removal. Outdoor vicarious reflectance validation showed that with these methods, the multispectral imagery can provide reliable reflectance at sunny conditions with root mean square deviations of around 3%. The proposed methods could be useful for operational multispectral mapping with UAS under low and variable irradiance weather conditions as those prevalent in northern latitudes. Numéro de notice : A2019-311 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2019.06.017 Date de publication en ligne : 04/07/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.06.017 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93336
in ISPRS Journal of photogrammetry and remote sensing > vol 155 (September 2019) . - pp 58 - 71[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019091 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019093 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt