Détail de l'auteur
Auteur Carmen Quintano |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Burn severity analysis in Mediterranean forests using maximum entropy model trained with EO-1 Hyperion and LiDAR data / Alfonso Fernández-Manso in ISPRS Journal of photogrammetry and remote sensing, vol 155 (September 2019)
[article]
Titre : Burn severity analysis in Mediterranean forests using maximum entropy model trained with EO-1 Hyperion and LiDAR data Type de document : Article/Communication Auteurs : Alfonso Fernández-Manso, Auteur ; Carmen Quintano, Auteur ; Dar A. Roberts, Auteur Année de publication : 2019 Article en page(s) : pp 102 - 118 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse de mélange spectral d’extrémités multiples
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] entropie
[Termes IGN] forêt méditerranéenne
[Termes IGN] image EO1-Hyperion
[Termes IGN] incendie de forêtRésumé : (Auteur) All ecosystems and in particular ecosystems in Mediterranean climates are affected by fires. Knowledge of the drivers that most influence burn severity patterns as well an accurate map of post-fire effects are key tools for forest managers in order to plan an adequate post-fire response. Remote sensing data are becoming an indispensable instrument to reach both objectives. This work explores the relative influence of pre-fire vegetation structure and topography on burn severity compared to the impact of post-fire damage level, and evaluates the utility of the Maximum Entropy (MaxEnt) classifier trained with post-fire EO-1 Hyperion data and pre-fire LiDAR to model three levels of burn severity at high accuracy. We analyzed a large fire in central-eastern Spain, which occurred on 16–19 June 2016 in a maquis shrubland and Pinus halepensis forested area. Post-fire hyperspectral Hyperion data were unmixed using Multiple Endmember Spectral Mixture Analysis (MESMA) and five fraction images were generated: char, green vegetation (GV), non-photosynthetic vegetation, soil (NPVS) and shade. Metrics associated with vegetation structure were calculated from pre-fire LiDAR. Post-fire MESMA char fraction image, pre-fire structural metrics and topographic variables acted as inputs to MaxEnt, which built a model and generated as output a suitability surface for each burn severity level. The percentage of contribution of the different biophysical variables to the MaxEnt model depended on the burn severity level (LiDAR-derived metrics had a greater contribution at the low burn severity level), but MaxEnt identified the char fraction image as the highest contributor to the model for all three burn severity levels. The present study demonstrates the validity of MaxEnt as one-class classifier to model burn severity accurately in Mediterranean countries, when trained with post-fire hyperspectral Hyperion data and pre-fire LiDAR. Numéro de notice : A2019-313 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2019.07.003 Date de publication en ligne : 14/07/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.07.003 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93339
in ISPRS Journal of photogrammetry and remote sensing > vol 155 (September 2019) . - pp 102 - 118[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019091 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019093 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt