Détail de l'auteur
Auteur Mohsen Azadbakht |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Automatic canola mapping using time series of Sentinel 2 images / Davoud Ashourloo in ISPRS Journal of photogrammetry and remote sensing, vol 156 (October 2019)
[article]
Titre : Automatic canola mapping using time series of Sentinel 2 images Type de document : Article/Communication Auteurs : Davoud Ashourloo, Auteur ; Hamid Salehi Shahrabi, Auteur ; Mohsen Azadbakht, Auteur ; Hossein Aghighi, Auteur ; Hamed Nematollahi, Auteur ; Abbas Alimohammadi, Auteur ; Ali Akbar Matkan, Auteur Année de publication : 2019 Article en page(s) : pp 63 - 76 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] agriculture de précision
[Termes IGN] Brassica napus subsp. napus
[Termes IGN] image proche infrarouge
[Termes IGN] image RVB
[Termes IGN] image Sentinel-MSI
[Termes IGN] Iran
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Oklahoma (Etats-Unis)
[Termes IGN] rendement agricole
[Termes IGN] série temporelleRésumé : (Auteur) Different techniques utilized for mapping various crops are mainly based on using training dataset. But, due to difficulties of access to a well-represented training data, development of automatic methods for detection of crops is an important need which has not been considered as it deserves. Therefore, main objective of present study was to propose a new automatic method for canola (Brassica napus L.) mapping based on Sentinel 2 satellite time series data. Time series data of three study sites in Iran (Moghan, Gorgan, Qazvin) and one site in USA: (Oklahoma), were used. Then, spectral reflectance values of canola in various spectral bands were compared with those of the other crops during the growing season. NDVI, Red and Green spectral bands were successfully applied for automatic identification of canola flowering date using the threshold values. Examination of the fisher function indicated that multiplication of the near-infrared (NIR) band by the sum of red and green bands during the flowering date is an efficient index to differentiate canola from the other crops. The Kappa and overall accuracy (OA) for the four study sites were more than 0.75 and 88%, respectively. Results of this research demonstrated the potential of the proposed approach for canola mapping using time series of remotely sensed data. Numéro de notice : A2019-317 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2019.08.007 Date de publication en ligne : 09/08/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.08.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93355
in ISPRS Journal of photogrammetry and remote sensing > vol 156 (October 2019) . - pp 63 - 76[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019103 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt