Détail de l'auteur
Auteur Wuyan Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Automated fusion of forest airborne and terrestrial point clouds through canopy density analysis / Wenxia Dai in ISPRS Journal of photogrammetry and remote sensing, vol 156 (October 2019)
[article]
Titre : Automated fusion of forest airborne and terrestrial point clouds through canopy density analysis Type de document : Article/Communication Auteurs : Wenxia Dai, Auteur ; Bisheng Yang, Auteur ; Xinlian Liang, Auteur ; Zhen Dong, Auteur ; Ronggang Huang, Auteur ; Yunsheng Wang, Auteur ; Wuyan Li, Auteur Année de publication : 2019 Article en page(s) : pp 94 - 107 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] algorithme ICP
[Termes IGN] canopée
[Termes IGN] données TLS (télémétrie)
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] fusion de données multisource
[Termes IGN] image ADAR
[Termes IGN] semis de points
[Termes IGN] surveillance forestièreRésumé : (Auteur) Airborne laser scanning (ALS) and terrestrial laser scanning (TLS) systems are effective ways to capture the 3D information of forests from complementary perspectives. Registration of the two sources of point clouds is necessary for various forestry applications. Since the forest point clouds show irregular and natural point distributions, standard registration methods working on geometric keypoints (e.g., points, lines, and planes) are likely to fail. Hence, we propose a novel method to register the ALS and TLS forest point clouds through density analysis of the crowns. The proposed method extracts mode-based keypoints by the mean shift method and aligns them by maximum likelihood estimation. Firstly, the differences in the point densities of the ALS and TLS crowns are minimized to produce analogous modes, which represent the local maxima of the underlying probability density function (PDF). The mode-based keypoints are then aligned through the coherent point drift (CPD) algorithm, which is independent of the descriptor similarities and considers the alignment as a maximum likelihood estimation problem. The sets of keypoints derived from the two data sources need not be equal. Finally, the recovered transformation is applied to the original point clouds and refined through the standard iterative closest point (ICP) algorithm. In contrast to some of the existing methods, the proposed method avoids the geometric description of the forest point clouds. Furthermore, additional information such as tree diameter or height is not required to evaluate the similarities. The experiments in this study were conducted in a Scandinavian boreal forest, located in Evo, Finland. The proposed method was tested on four datasets (ALS data: a circle with a diameter of 60 m, multi-scan TLS data: 32 × 32 m) with heterogeneous tree species and structures. The results showed that the proposed probabilistic-based method obtains a good performance with a 3D distance residual of 0.069 m, and improved the accuracy of the registration when compared with the existing methods. Numéro de notice : A2019-318 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : doi.org/10.1016/j.isprsjprs.2019.08.008 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.08.008 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93356
in ISPRS Journal of photogrammetry and remote sensing > vol 156 (October 2019) . - pp 94 - 107[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019103 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt