Détail de l'auteur
Auteur Guilherme Silverio Aquino de Souza |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multi-sensor prediction of Eucalyptus stand volume: A support vector approach / Guilherme Silverio Aquino de Souza in ISPRS Journal of photogrammetry and remote sensing, vol 156 (October 2019)
[article]
Titre : Multi-sensor prediction of Eucalyptus stand volume: A support vector approach Type de document : Article/Communication Auteurs : Guilherme Silverio Aquino de Souza, Auteur ; Vicente Paulo Soares, Auteur ; Helio Garcia Leite, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 135 - 146 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] bande L
[Termes IGN] Brésil
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal
[Termes IGN] Eucalyptus (genre)
[Termes IGN] image ALOS-AVNIR2
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image radar moirée
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] régression multiple
[Termes IGN] taux d'échantillonnage
[Termes IGN] volume en boisRésumé : (Auteur) Stem volume is a key attribute of Eucalyptus forest plantations upon which decision-making is based at diverse levels of planning. Quantifying volume through remote sensing can support a proper management of forests. Because of limitations on spaceborne optical and synthetic aperture radar sensors, this study integrated both types of datasets assembled using support vector regression (SVR) to retrieve the stand volume of Eucalyptus plantations. We assessed different combinations of sensors and a minimum number of plots to develop an SVR model. Finally, the best SVR performance was compared with other analytical methods already tested and in the literature: multilinear regression, artificial neural networks (ANN), and random forest (RF). Here, we introduce a test for comparative analysis of the performance of different methods. We found that SVR accurately predicted stem volume of Brazilian fast-growing Eucalyptus forest plantations. Gaussian radial basis was the most suitable kernel function. Integrating the optical and L-band backscatter data increased the predictive accuracy compared to a single sensor model. Combining NIR-band data from ALOS AVNIR-2 and backscatter of L-band horizontal emitted and vertical received (HV) electric fields from ALOS PALSAR produced the most accurate SVR model (with an R2 of 0.926 and root mean square error of 11.007 m3/ha). The number of field plots sufficient for model development with non-redundant explanatory variables was 77. Under this condition, SVR performed similarly to ANN and outperformed the multiple linear regression and random forest methods. Numéro de notice : A2019-319 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : doi.org/10.1016/j.isprsjprs.2019.08.002 Date de publication en ligne : 20/08/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.08.002 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93357
in ISPRS Journal of photogrammetry and remote sensing > vol 156 (October 2019) . - pp 135 - 146[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019101 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019103 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt