Détail de l'auteur
Auteur Joris Ravaglia |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Comparison of three algorithms to estimate tree stem diameter from terrestrial laser scanner data / Joris Ravaglia in Forests, vol 10 n° 7 (July 2019)
[article]
Titre : Comparison of three algorithms to estimate tree stem diameter from terrestrial laser scanner data Type de document : Article/Communication Auteurs : Joris Ravaglia, Auteur ; Richard A. Fournier, Auteur ; Alexandra Bac, Auteur ; Cédric Vega , Auteur ; Jean-François Côté, Auteur ; Alexandre Piboule, Auteur ; Ulysse Rémillard, Auteur Année de publication : 2019 Projets : ARBRE / AgroParisTech (2007 -) Article en page(s) : 19 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse comparative
[Termes IGN] Canada
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] diamètre des arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] feuillu
[Termes IGN] France (administrative)
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] Pinophyta
[Termes IGN] semis de points
[Termes IGN] transformation de Hough
[Termes IGN] volume en boisRésumé : (auteur) Terrestrial laser scanners provide accurate and detailed point clouds of forest plots, which can be used as an alternative to destructive measurements during forest inventories. Various specialized algorithms have been developed to provide automatic and objective estimates of forest attributes from point clouds. The STEP (Snakes for Tuboid Extraction from Point cloud) algorithm was developed to estimate both stem diameter at breast height and stem diameters along the bole length. Here, we evaluate the accuracy of this algorithm and compare its performance with two other state-of-the-art algorithms that were designed for the same purpose (i.e., the CompuTree and SimpleTree algorithms). We tested each algorithm against point clouds that incorporated various degrees of noise and occlusion. We applied these algorithms to three contrasting test sites: (1) simulated scenes of coniferous stands in Newfoundland (Canada), (2) test sites of deciduous stands in Phalsbourg (France), and (3) coniferous plantations in Quebec, Canada. In most cases, the STEP algorithm predicted diameter at breast height with higher R2 and lower RMSE than the other two algorithms. The STEP algorithm also achieved greater accuracy when estimating stem diameter in occluded and noisy point clouds, with mean errors in the range of 1.1 cm to 2.28 cm. The CompuTree and SimpleTree algorithms respectively produced errors in the range of 2.62 cm to 6.1 cm and 1.03 cm to 3.34 cm, respectively. Unlike CompuTree or SimpleTree, the STEP algorithm was not able to estimate trunk diameter in the uppermost portions of the trees. Our results show that the STEP algorithm is more adapted to extract DBH and stem diameter automatically from occluded and noisy point clouds. Our study also highlights that SimpleTree and CompuTree require data filtering and results corrections. Conversely, none of these procedures were applied for the implementation of the STEP algorithm. Numéro de notice : A2019-337 Affiliation des auteurs : LIF+Ext (2012-2019) Autre URL associée : vers HAL Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f10070599 Date de publication en ligne : 18/07/2019 En ligne : https://hal.science/hal-03325416v1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93367
in Forests > vol 10 n° 7 (July 2019) . - 19 p.[article]