Détail de l'auteur
Auteur Mariana Madruga de bruto |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Spatially-explicit sensitivity and uncertainty analysis in a MCDA-based flood vulnerability model / Mariana Madruga de bruto in International journal of geographical information science IJGIS, vol 33 n° 9 (September 2019)
[article]
Titre : Spatially-explicit sensitivity and uncertainty analysis in a MCDA-based flood vulnerability model Type de document : Article/Communication Auteurs : Mariana Madruga de bruto, Auteur ; Adrian Almoradie, Auteur ; Mariele Evers, Auteur Année de publication : 2019 Article en page(s) : pp 1788-1806 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de sensibilité
[Termes IGN] analyse multicritère
[Termes IGN] Brésil
[Termes IGN] Geospatial data abstraction library
[Termes IGN] incertitude des données
[Termes IGN] inondation
[Termes IGN] méthode robuste
[Termes IGN] modèle de simulation
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] Python (langage de programmation)
[Termes IGN] vulnérabilité
[Termes IGN] zone à risqueRésumé : (auteur) This study presents a methodology for conducting sensitivity and uncertainty analysis of a GIS-based multi-criteria model used to assess flood vulnerability in a case study in Brazil. The paper explores the robustness of model outcomes against slight changes in criteria weights. One criterion was varied at-a-time, while others were fixed to their baseline values. An algorithm was developed using Python and a geospatial data abstraction library to automate the variation of weights, implement the ANP (analytic network process) tool, reclassify the raster results, compute the class switches, and generate an uncertainty surface. Results helped to identify highly vulnerable areas that are burdened by high uncertainty and to investigate which criteria contribute to this uncertainty. Overall, the criteria ‘houses with improper building material’ and ‘evacuation drills and training’ are the most sensitive ones, thus, requiring more accurate measurements. The sensitivity of these criteria is explained by their weights in the base run, their spatial distribution, and the spatial resolution. These findings can support decision makers to characterize, report, and mitigate uncertainty in vulnerability assessment. The case study results demonstrate that the developed approach is simple, flexible, transparent, and may be applied to other complex spatial problems. Numéro de notice : A2019-389 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1599125 Date de publication en ligne : 05/04/2019 En ligne : https://doi.org/10.1080/13658816.2019.1599125 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93480
in International journal of geographical information science IJGIS > vol 33 n° 9 (September 2019) . - pp 1788-1806[article]Exemplaires(2)
Code-barres Cote Support Localisation Section Disponibilité 079-2019091 RAB Revue Centre de documentation En réserve L003 Disponible 079-2019092 RAB Revue Centre de documentation En réserve L003 Disponible