Détail de l'auteur
Auteur Jie Wan |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A geometry-aware attention network for semantic segmentation of MLS point clouds / Jie Wan in International journal of geographical information science IJGIS, vol 37 n° 1 (January 2023)
[article]
Titre : A geometry-aware attention network for semantic segmentation of MLS point clouds Type de document : Article/Communication Auteurs : Jie Wan, Auteur ; Yongyang Xu, Auteur ; Qinjun Qiu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 138 - 161 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] corrélation
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] figure géométrique
[Termes IGN] fonction de perte
[Termes IGN] graphe
[Termes IGN] Perceptron multicouche
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] semis de pointsRésumé : (auteur) Semantic segmentation of mobile laser scanning (MLS) point clouds can provide meaningful 3 D semantic information of urban facilities for various applications. However, it still remains a challenge to extract accurate 3 D semantic information from MLS point cloud data due to its irregular 3 D geometric structure in a large-scale outdoor scene. To this end, this study develops a geometry-aware attention point network (GAANet) with geometric properties of the point cloud as a reference. Specifically, the proposed method first builds a graph-like region for each input point to establish the geometric correlation toward its neighbors for robustly descripting local geometry-aware features. Thereafter, the method introduces a novel multi-head attention mechanism to efficiently learn local discriminative features on the constructed graphs and a feature combination operation to capture both local and global geometric dependencies inside fused point features for significantly facilitating the segmentation of small or incomplete 3 D objects at point-level. Finally, an adaptive loss function is appended to handle class imbalance for the overall performance improvement. The validation experiments on two challenging benchmarks demonstrate the effectiveness and powerful generation ability of the proposed method, which achieves state-of-the-art performance with mean IoU of 65.09% and 95.20% in the Toronto-3D and Oakland 3-D MLS dataset, respectively. Numéro de notice : A2023-038 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/13658816.2022.2111572 Date de publication en ligne : 24/08/2022 En ligne : https://doi.org/10.1080/13658816.2022.2111572 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102309
in International journal of geographical information science IJGIS > vol 37 n° 1 (January 2023) . - pp 138 - 161[article]PPD: Pyramid Patch Descriptor via convolutional neural network / Jie Wan in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 9 (September 2019)
[article]
Titre : PPD: Pyramid Patch Descriptor via convolutional neural network Type de document : Article/Communication Auteurs : Jie Wan, Auteur ; Alper Yilmaz, Auteur ; Lei Yan, Auteur Année de publication : 2019 Article en page(s) : pp 673 - 686 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] appariement d'images
[Termes IGN] benchmark spatial
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données localisées de référence
[Termes IGN] échantillonnage d'image
[Termes IGN] état de l'art
[Termes IGN] extraction de données
[Termes IGN] image aérienne
[Termes IGN] image satellite
[Termes IGN] jeu de données localiséesRésumé : (Auteur) Local features play an important role in remote sensing image matching, and handcrafted features have been excessively used in this area for a long time. This article proposes a pyramid convolutional neural triplet network that extracts a 128-dimensional deep descriptor that significantly improves the matching performance. The proposed approach first extracts deep descriptors of the anchor patches and corresponding positive patches in a batch using the proposed pyramid convolutional neural network. Following this step, the approaches chooses the closest negative patch for each anchor patch and corresponding positive patch pair to form the triplet sample based on the descriptor distances among all other image patches in the batch. These triplets are used to optimize the parameters of the network using a new loss function. We evaluated the proposed deep descriptors on two benchmark data sets (Brown and HPatches) as well as real image data sets. The results reveal that the proposed descriptor achieves the state-of-the-art performance on the Brown data set and a comparatively very high performance on the HPatches data set. The proposed approach finds more correct matches than the classical handcrafted feature descriptors on aerial image pairs and is observed to be robust to variations in the viewpoint and illumination. Numéro de notice : A2019-416 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.9.673 Date de publication en ligne : 01/09/2019 En ligne : https://doi.org/10.14358/PERS.85.9.673 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93543
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 9 (September 2019) . - pp 673 - 686[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019091 SL Revue Centre de documentation Revues en salle Disponible