Détail de l'auteur
Auteur Yue Lin |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A deep learning architecture for semantic address matching / Yue Lin in International journal of geographical information science IJGIS, vol 34 n° 3 (March 2020)
[article]
Titre : A deep learning architecture for semantic address matching Type de document : Article/Communication Auteurs : Yue Lin, Auteur ; Mengjun Kang, Auteur ; Yuyang Wu, Auteur Année de publication : 2020 Article en page(s) : pp 559 - 576 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] appariement d'adresses
[Termes IGN] appariement sémantique
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] géocodage par adresse postale
[Termes IGN] gestion urbaine
[Termes IGN] inférence sémantique
[Termes IGN] représentation vectorielle
[Termes IGN] réseau neuronal profond
[Termes IGN] Shenzhen
[Termes IGN] similitude sémantique
[Termes IGN] traitement du langage naturelRésumé : (auteur) Address matching is a crucial step in geocoding, which plays an important role in urban planning and management. To date, the unprecedented development of location-based services has generated a large amount of unstructured address data. Traditional address matching methods mainly focus on the literal similarity of address records and are therefore not applicable to the unstructured address data. In this study, we introduce an address matching method based on deep learning to identify the semantic similarity between address records. First, we train the word2vec model to transform the address records into their corresponding vector representations. Next, we apply the enhanced sequential inference model (ESIM), a deep text-matching model, to make local and global inferences to determine if two addresses match. To evaluate the accuracy of the proposed method, we fine-tune the model with real-world address data from the Shenzhen Address Database and compare the outputs with those of several popular address matching methods. The results indicate that the proposed method achieves a higher matching accuracy for unstructured address records, with its precision, recall, and F1 score (i.e., the harmonic mean of precision and recall) reaching 0.97 on the test set. Numéro de notice : A2020-106 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1681431 Date de publication en ligne : 24/10/2019 En ligne : https://doi.org/10.1080/13658816.2019.1681431 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94702
in International journal of geographical information science IJGIS > vol 34 n° 3 (March 2020) . - pp 559 - 576[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020031 RAB Revue Centre de documentation En réserve L003 Disponible Extracting urban landmarks from geographical datasets using a random forests classifier / Yue Lin in International journal of geographical information science IJGIS, vol 33 n° 12 (December 2019)
[article]
Titre : Extracting urban landmarks from geographical datasets using a random forests classifier Type de document : Article/Communication Auteurs : Yue Lin, Auteur ; Yuyang Cai, Auteur ; Yue Gong, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 2406 - 2423 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] extraction automatique
[Termes IGN] gestion des itinéraires
[Termes IGN] jeu de données localisées
[Termes IGN] point de repère
[Termes IGN] précision de la classification
[Termes IGN] représentation mentale spatiale
[Termes IGN] saillance
[Termes IGN] Shenzhen
[Termes IGN] villeRésumé : (auteur) Urban landmarks are of significant importance to spatial cognition and route navigation. However, the current landmark extraction methods mainly focus on the visual salience of landmarks and are insufficient for obtaining high extraction accuracy when the size of the geographical dataset varies. This study introduces a random forests (RF) classifier combining with the synthetic minority oversampling technique (SMOTE) in urban landmark extraction. Both GIS and social sensing data are employed to quantify the structural and cognitive salience of the examined urban features, which are available from basic spatial databases or mainstream web service application programming interfaces (APIs). The results show that the SMOTE-RF model performs well in urban landmark extraction, with the values of recall, precision, F-measure and AUC reaching 0.851, 0.831, 0.841 and 0.841, respectively. Additionally, this method is suitable for both large and small geographical datasets. The ranking of variable importance given by this model further indicates that certain cognitive measures – such as feature class, Weibo popularity and Bing popularity – can serve as crucial factors for determining a landmark. The optimal variable combination for landmark extraction is also acquired, which might provide support for eliminating the variable selection requirement in other landmark extraction methods. Numéro de notice : A2019-426 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1620238 Date de publication en ligne : 28/05/2019 En ligne : https://doi.org/10.1080/13658816.2019.1620238 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93559
in International journal of geographical information science IJGIS > vol 33 n° 12 (December 2019) . - pp 2406 - 2423[article]