Détail de l'auteur
Auteur Yuyang Cai |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Extracting urban landmarks from geographical datasets using a random forests classifier / Yue Lin in International journal of geographical information science IJGIS, vol 33 n° 12 (December 2019)
[article]
Titre : Extracting urban landmarks from geographical datasets using a random forests classifier Type de document : Article/Communication Auteurs : Yue Lin, Auteur ; Yuyang Cai, Auteur ; Yue Gong, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 2406 - 2423 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] extraction automatique
[Termes IGN] gestion des itinéraires
[Termes IGN] jeu de données localisées
[Termes IGN] point de repère
[Termes IGN] précision de la classification
[Termes IGN] représentation mentale spatiale
[Termes IGN] saillance
[Termes IGN] Shenzhen
[Termes IGN] villeRésumé : (auteur) Urban landmarks are of significant importance to spatial cognition and route navigation. However, the current landmark extraction methods mainly focus on the visual salience of landmarks and are insufficient for obtaining high extraction accuracy when the size of the geographical dataset varies. This study introduces a random forests (RF) classifier combining with the synthetic minority oversampling technique (SMOTE) in urban landmark extraction. Both GIS and social sensing data are employed to quantify the structural and cognitive salience of the examined urban features, which are available from basic spatial databases or mainstream web service application programming interfaces (APIs). The results show that the SMOTE-RF model performs well in urban landmark extraction, with the values of recall, precision, F-measure and AUC reaching 0.851, 0.831, 0.841 and 0.841, respectively. Additionally, this method is suitable for both large and small geographical datasets. The ranking of variable importance given by this model further indicates that certain cognitive measures – such as feature class, Weibo popularity and Bing popularity – can serve as crucial factors for determining a landmark. The optimal variable combination for landmark extraction is also acquired, which might provide support for eliminating the variable selection requirement in other landmark extraction methods. Numéro de notice : A2019-426 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1620238 Date de publication en ligne : 28/05/2019 En ligne : https://doi.org/10.1080/13658816.2019.1620238 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93559
in International journal of geographical information science IJGIS > vol 33 n° 12 (December 2019) . - pp 2406 - 2423[article]