Détail de l'auteur
Auteur Tingting Xu |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Urban expansion in Auckland, New Zealand: a GIS simulation via an intelligent self-adapting multiscale agent-based model / Tingting Xu in International journal of geographical information science IJGIS, vol 34 n° 11 (November 2020)
[article]
Titre : Urban expansion in Auckland, New Zealand: a GIS simulation via an intelligent self-adapting multiscale agent-based model Type de document : Article/Communication Auteurs : Tingting Xu, Auteur ; Jay Gao, Auteur ; Giovanni Coco, Auteur ; Shuliang Wang, Auteur Année de publication : 2020 Article en page(s) : pp 2136 - 2159 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] agent (intelligence artificielle)
[Termes IGN] Auckland
[Termes IGN] croissance urbaine
[Termes IGN] étalement urbain
[Termes IGN] modèle de simulation
[Termes IGN] modèle orienté agent
[Termes IGN] occupation du sol
[Termes IGN] réseau neuronal artificiel
[Termes IGN] simulation dynamique
[Termes IGN] utilisation du solRésumé : (auteur) When modelling urban expansion dynamics, cellular automata models focus mostly on the physical environments and cell neighbours, but ignore the ‘human’ aspect of the allocation of urban expansion cells. This limitation is overcome here using an intelligent self-adapting multiscale agent-based model. To simulate the urban expansion of Auckland, New Zealand, a total of 15 urban expansion drivers/constraints were considered over two periods (2000–2005, 2005–2010). The modelling takes into consideration both a macro-scale agent (government) and micro-scale agents (residents of three income levels), and their multi-level interactions. In order to achieve reliable simulation results, ABM was coupled with an artificial neural network to reveal the learning process and heterogeneity of the multi-sub-residential agents. The ANN-ABM accurately simulated the urban expansion of Auckland at both the global and local scales, with kappa simulation value at 0.48 and 0.55, respectively. The validated simulation result shows that the intelligent and self-adapting ANN-ABM approach is more accurate than an ABM with a general type of agent model (kappa simulation = 0.42) at the global scale, and more accurate than an ANN-based CA model (kappa simulation = 0.47) at the local scale. Simulation inaccuracy stems mostly from the outdated master land use plan. Numéro de notice : A2020-613 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1748192 Date de publication en ligne : 17/04/2020 En ligne : https://doi.org/10.1080/13658816.2020.1748192 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95984
in International journal of geographical information science IJGIS > vol 34 n° 11 (November 2020) . - pp 2136 - 2159[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020111 RAB Revue Centre de documentation En réserve L003 Disponible Extraction of urban built-up areas from nighttime lights using artificial neural network / Tingting Xu in Geocarto international, vol 35 n° 10 ([01/08/2020])
[article]
Titre : Extraction of urban built-up areas from nighttime lights using artificial neural network Type de document : Article/Communication Auteurs : Tingting Xu, Auteur ; Giovanni Coco, Auteur ; Jay Gao, Auteur Année de publication : 2020 Article en page(s) : pp 1049 - 1066 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] aménagement du territoire
[Termes IGN] bati
[Termes IGN] cartographie urbaine
[Termes IGN] classification dirigée
[Termes IGN] développement durable
[Termes IGN] échantillonnage
[Termes IGN] éclairage public
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] rayonnement lumineux
[Termes IGN] réseau neuronal artificiel
[Termes IGN] seuillage
[Termes IGN] température au sol
[Termes IGN] zone urbaineRésumé : (auteur) The spatial distribution of urban areas at the national and regional scales is critical for urban planners and governments to design sustainable and environment-friendly future development plans. The nighttime lights (NTL) data provide an effective way to monitor the urban at different scales however is usually achieved by using empirical threshold-based algorithms. This study proposed a novel Artificial Neural Network (ANN) approach, using moderate resolution imageries as NTL, MODIS NDVI and land surface temperature data, to map urban areas. Both random and maximum dissimilarity distance algorithm sampling methods were considered and compared. The validation of the urban areas extracted from MDA-based ANN against the 2011 US national land cover data showed a reasonable quality (overall accuracy = 97.84; Kappa = 0.74) and achieved more accurate result than the threshold method. This study demonstrates that ANN can provide an effective, rapid, and accurate alternative in extracting urban built-up areas from NTL. Numéro de notice : A2020-424 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1559887 Date de publication en ligne : 21/03/2019 En ligne : https://doi.org/10.1080/10106049.2018.1559887 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95488
in Geocarto international > vol 35 n° 10 [01/08/2020] . - pp 1049 - 1066[article]Simulation of urban expansion via integrating artificial neural network with Markov chain – cellular automata / Tingting Xu in International journal of geographical information science IJGIS, vol 33 n° 10 (October 2019)
[article]
Titre : Simulation of urban expansion via integrating artificial neural network with Markov chain – cellular automata Type de document : Article/Communication Auteurs : Tingting Xu, Auteur ; Jay Gao, Auteur ; Giovanni Coco, Auteur Année de publication : 2019 Article en page(s) : pp 1960 - 1983 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse diachronique
[Termes IGN] Auckland
[Termes IGN] automate cellulaire
[Termes IGN] base de données d'occupation du sol
[Termes IGN] chaîne de Markov
[Termes IGN] classification par réseau neuronal
[Termes IGN] croissance urbaine
[Termes IGN] étalement urbain
[Termes IGN] Kappa de Cohen
[Termes IGN] modèle de simulation
[Termes IGN] morphologie urbaine
[Termes IGN] optimisation (mathématiques)Résumé : (auteur) Accurate simulations and predictions of urban expansion are critical to manage urbanization and explicitly address the spatiotemporal trends and distributions of urban expansion. Cellular Automata integrated Markov Chain (CA-MC) is one of the most frequently used models for this purpose. However, the urban suitability index (USI) map produced from the conventional CA-MC is either affected by human bias or cannot accurately reflect the possible nonlinear relations between driving factors and urban expansion. To overcome these limitations, a machine learning model (Artificial Neural Network, ANN) was integrated with CA-MC instead of the commonly used Analytical Hierarchy Process (AHP) and Logistic Regression (LR) CA-MC models. The ANN was optimized to create the USI map and then integrated with CA-MC to spatially allocate urban expansion cells. The validated results of kappa and fuzzy kappa simulation indicate that ANN-CA-MC outperformed other variously coupled CA-MC modelling approaches. Based on the ANN-CA-MC model, the urban area in South Auckland is predicted to expand to 1340.55 ha in 2026 at the expense of non-urban areas, mostly grassland and open-bare land. Most of the future expansion will take place within the planned new urban growth zone. Numéro de notice : A2019-428 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1600701 Date de publication en ligne : 05/04/2019 En ligne : https://doi.org/10.1080/13658816.2019.1600701 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93561
in International journal of geographical information science IJGIS > vol 33 n° 10 (October 2019) . - pp 1960 - 1983[article]