Détail de l'auteur
Auteur Hamdan Omar |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Individual tree crown segmentation in tropical peat swamp forest using airborne hyperspectral data / Sitinor Atikah Nordin in Geocarto international, vol 34 n° 11 ([15/08/2019])
[article]
Titre : Individual tree crown segmentation in tropical peat swamp forest using airborne hyperspectral data Type de document : Article/Communication Auteurs : Sitinor Atikah Nordin, Auteur ; Zulkiflee Abd Latif, Auteur ; Hamdan Omar, Auteur Année de publication : 2019 Article en page(s) : pp 1218 - 1236 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse en composantes principales
[Termes IGN] analyse multibande
[Termes IGN] Asie du sud-est
[Termes IGN] bande rouge
[Termes IGN] canopée
[Termes IGN] capteur hyperspectral
[Termes IGN] carte forestière
[Termes IGN] forêt tropicale
[Termes IGN] image hyperspectrale
[Termes IGN] image proche infrarouge
[Termes IGN] image satellite
[Termes IGN] niveau de gris (image)
[Termes IGN] réflectance végétale
[Termes IGN] segmentation d'image
[Termes IGN] teneur en chlorophylle des feuilles
[Termes IGN] tourbièreRésumé : (Auteur) Individual tree crown segmentation is important step for deriving various information for fine-scale analysis of ecological process. However, only several studies have applied tree crown segmentation in tropical forest ecosystems, especially in mixed peat swamp forests. In this study, hyperspectral data were used to detect changes in the biochemical and biophysical characteristics, which are important factors for tree crown segmentation. Principal Component Analysis method was performed to investigate its influence on crown segmentation. Visually Selected PCs, 160 PCs and 160 Spectral Bands image were used and two segmentation techniques; Watershed Transformation and Region Growing segmentation were applied on those images. The highest accuracy was achieved for the crown segmentation is using Region Growing segmentation, based on 1:1 measurement, D value and RMSE value. The results obtained from 160 PCs image using region growing algorithm shows better accuracy with D value of 0.2 (80% accuracy, 20% error) and RMSE of 9.9 m2. Numéro de notice : A2019-463 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1475511 Date de publication en ligne : 24/05/2018 En ligne : https://doi.org/10.1080/10106049.2018.1475511 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93605
in Geocarto international > vol 34 n° 11 [15/08/2019] . - pp 1218 - 1236[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2019111 RAB Revue Centre de documentation En réserve L003 Disponible