Détail de l'auteur
Auteur Li Ma |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Local manifold learning-based k-Nearest-Neighbor for hyperspectral image classification / Li Ma in IEEE Transactions on geoscience and remote sensing, vol 48 n° 11 (November 2010)
[article]
Titre : Local manifold learning-based k-Nearest-Neighbor for hyperspectral image classification Type de document : Article/Communication Auteurs : Li Ma, Auteur ; Jing Tian, Auteur Année de publication : 2010 Article en page(s) : pp 1099 - 4109 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification barycentrique
[Termes IGN] image AVIRIS
[Termes IGN] image EO1-Hyperion
[Termes IGN] image hyperspectraleRésumé : (Auteur) Approaches to combine local manifold learning (LML) and the k -nearest-neighbor (kNN) classifier are investigated for hyperspectral image classification. Based on supervised LML (SLML) and kNN, a new SLML-weighted kNN (SLML-W kNN) classifier is proposed. This method is appealing as it does not require dimensionality reduction and only depends on the weights provided by the kernel function of the specific ML method. Performance of the proposed classifier is compared to that of unsupervised LML (ULML) and SLML for dimensionality reduction in conjunction with the kNN (ULML- kNN and SLML-k NN). Three LML methods, locally linear embedding (LLE), local tangent space alignment (LTSA), and Laplacian eigenmaps, are investigated with these classifiers. In experiments with Hyperion and AVIRIS hyperspectral data, the proposed SLML-WkNN performed better than ULML- kNN and SLML-k NN, and the highest accuracies were obtained using weights provided by supervised LTSA and LLE. Numéro de notice : A2010-479 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2010.2055876 Date de publication en ligne : 23/08/2010 En ligne : https://doi.org/10.1109/TGRS.2010.2055876 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=30672
in IEEE Transactions on geoscience and remote sensing > vol 48 n° 11 (November 2010) . - pp 1099 - 4109[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 065-2010111 RAB Revue Centre de documentation En réserve L003 Disponible