Détail de l'auteur
Auteur Francesco Minunno |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Testing the application of process-based forest growth model PREBAS to uneven-aged forests in Finland / Man Hu in Forest ecology and management, vol 529 (February-1 2023)
[article]
Titre : Testing the application of process-based forest growth model PREBAS to uneven-aged forests in Finland Type de document : Article/Communication Auteurs : Man Hu, Auteur ; Francesco Minunno, Auteur ; Mikko Peltoniemi, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 120702 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] biomasse forestière
[Termes IGN] croissance des arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] Finlande
[Termes IGN] forêt boréale
[Termes IGN] forêt inéquienne
[Termes IGN] hauteur des arbres
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle de simulation
[Termes IGN] modélisation de la forêt
[Termes IGN] mortalité
[Termes IGN] peuplement mélangé
[Termes IGN] photosynthèse
[Termes IGN] Picea abies
[Termes IGN] structure d'un peuplement forestier
[Vedettes matières IGN] ForesterieRésumé : (auteur) The challenges of applying process-based models to uneven-aged forests are the difficulties in simulating the interactions between trees and resource allocation between size classes. In this study, we focused on a process-based forest growth model PREBAS which is a mean tree model with Reineke self-thinning mortality and was originally developed for even-aged forests. The primary aim was to test the application of PREBAS model to uneven-aged forests by introducing different diameter at breast height (DBH) size classes to better represent the forest structure. Additionally, we introduced a new mortality model to PREBAS which is developed for uneven-aged stands and compared with the current PREBAS version in which a modification Reineke rule is used. The tests were conducted in 26 old Norway spruce dominated stands in southern and central Finland with three consecutive measurements (on average a 25-year study period). To evaluate the model performance, we compared the estimations of stand averaged diameter at breast height (D), stand averaged tree height (H), stand averaged crown base height (), stand basal area (B) and density (N) with measurements. Moreover, biomass estimations of each tree component (foliage, branch and stem) were compared to estimations from empirical models. Results showed that introducing size distributions can represent better stand structure and improve the model predictions compared with data. Moreover, the new mortality model showed promise with qualitatively more realistic results especially among the largest tree size classes. However, model bias still existed in the simulation although the predictions were improved. It revealed that further calibration of the PREBAS model with size classes should be done to better extend the model applicability to uneven-aged forests. Numéro de notice : A2023-022 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2022.120702 Date de publication en ligne : 05/12/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120702 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102228
in Forest ecology and management > vol 529 (February-1 2023) . - n° 120702[article]Bayesian calibration of a carbon balance model PREBAS using data from permanent growth experiments and national forest inventory / Francesco Minunno in Forest ecology and management, vol 440 (15 May 2019)
[article]
Titre : Bayesian calibration of a carbon balance model PREBAS using data from permanent growth experiments and national forest inventory Type de document : Article/Communication Auteurs : Francesco Minunno, Auteur ; Mikko Peltoniemi, Auteur ; Sanna Härkönen, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 208-257 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] assimilation des données
[Termes IGN] Betula pendula
[Termes IGN] bilan du carbone
[Termes IGN] bois sur pied
[Termes IGN] changement climatique
[Termes IGN] croissance des arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] estimation bayesienne
[Termes IGN] étalonnage de modèle
[Termes IGN] Finlande
[Termes IGN] gestion forestière
[Termes IGN] hauteur à la base du houppier
[Termes IGN] hauteur des arbres
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle de simulation
[Termes IGN] modélisation de la forêt
[Termes IGN] Picea abies
[Termes IGN] Pinus sylvestris
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Policy-relevant forest models must be environment and management sensitive and provide unbiased estimates of predicted variables over their intended areas of application. While empirical models derive their structure and parameters from representative data sets, process-based model (PBM) parameters should be evaluated in ranges that have a biological meaning independently of output data. At the same time PBMs should be calibrated against observations in order to obtain unbiased estimates and an understanding of their predictive capability. By means of model data assimilation, we Bayesian calibrated a forest model (PREBAS) using an extensive dataset that covered a wide range of climatic conditions, species composition and management practices. PREBAS was calibrated for three species in Finland: Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies [L.] H. Karst.) and Silver birch (Betula pendula L.). Data assimilation was strongly effective in reducing the uncertainty of PREBAS parameters and predictions. A country-generic calibration showed robust performances in predicting forest variables and the results were consistent with yield tables and national forest statistics. The posterior predictive uncertainty of the model was mainly influenced by the uncertainty of the structural and measurement error. Numéro de notice : A2019-486 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.foreco.2019.02.041 Date de publication en ligne : 20/03/2019 En ligne : https://doi.org/10.1016/j.foreco.2019.02.041 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93666
in Forest ecology and management > vol 440 (15 May 2019) . - pp 208-257[article]