Détail de l'auteur
Auteur Fei Deng |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Context pyramidal network for stereo matching regularized by disparity gradients / Junhua Kang in ISPRS Journal of photogrammetry and remote sensing, vol 157 (November 2019)
[article]
Titre : Context pyramidal network for stereo matching regularized by disparity gradients Type de document : Article/Communication Auteurs : Junhua Kang, Auteur ; Lin Chen, Auteur ; Fei Deng, Auteur ; Christian Heipke, Auteur Année de publication : 2019 Article en page(s) : pp 201 - 215 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] appariement de formes
[Termes IGN] apprentissage profond
[Termes IGN] chaîne de traitement
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] gradient
[Termes IGN] vision par ordinateur
[Termes IGN] vision stéréoscopiqueRésumé : (Auteur) Also after many years of research, stereo matching remains to be a challenging task in photogrammetry and computer vision. Recent work has achieved great progress by formulating dense stereo matching as a pixel-wise learning task to be resolved with a deep convolutional neural network (CNN). However, most estimation methods, including traditional and deep learning approaches, still have difficulty to handle real-world challenging scenarios, especially those including large depth discontinuity and low texture areas.
To tackle these problems, we investigate a recently proposed end-to-end disparity learning network, DispNet (Mayer et al., 2015), and improve it to yield better results in these problematic areas. The improvements consist of three major contributions. First, we use dilated convolutions to develop a context pyramidal feature extraction module. A dilated convolution expands the receptive field of view when extracting features, and aggregates more contextual information, which allows our network to be more robust in weakly textured areas. Second, we construct the matching cost volume with patch-based correlation to handle larger disparities. We also modify the basic encoder-decoder module to regress detailed disparity images with full resolution. Third, instead of using post-processing steps to impose smoothness in the presence of depth discontinuities, we incorporate disparity gradient information as a gradient regularizer into the loss function to preserve local structure details in large depth discontinuity areas.
We evaluate our model in terms of end-point-error on several challenging stereo datasets including Scene Flow, Sintel and KITTI. Experimental results demonstrate that our model decreases the estimation error compared with DispNet on most datasets (e.g. we obtain an improvement of 46% on Sintel) and estimates better structure-preserving disparity maps. Moreover, our proposal also achieves competitive performance compared to other methods.Numéro de notice : A2019-496 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.09.012 Date de publication en ligne : 27/09/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.09.012 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93729
in ISPRS Journal of photogrammetry and remote sensing > vol 157 (November 2019) . - pp 201 - 215[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019111 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019113 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019112 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt