Détail de l'auteur
Auteur Žiga Kokalj |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Fluvial gravel bar mapping with spectral signal mixture analysis / Liza Stančič in European journal of remote sensing, vol 54 sup 1 (2021)
[article]
Titre : Fluvial gravel bar mapping with spectral signal mixture analysis Type de document : Article/Communication Auteurs : Liza Stančič, Auteur ; Krištof Oštir, Auteur ; Žiga Kokalj, Auteur Année de publication : 2021 Article en page(s) : pp 31 - 46 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] bassin hydrographique
[Termes IGN] carte thématique
[Termes IGN] gravier
[Termes IGN] image Landsat
[Termes IGN] image Sentinel-MSI
[Termes IGN] précision infrapixellaire
[Termes IGN] réflectance spectrale
[Termes IGN] rivière
[Termes IGN] signature spectrale
[Termes IGN] SlovénieRésumé : (auteur) The paper presents a method for mapping fluvial gravel bars based on Sentinel-2 and Landsat imagery. The proposed method therefore uses spectral signal mixture analysis (SSMA) because its results allow the development of land cover fraction maps for surface water, gravel, and vegetation. The method is validated on a spatially heterogeneous mountainous area in the upper Soča river basin in north-west Slovenia, Central Europe. Unmixing results in highly accurate fraction maps with MAE of around 0.1. Gravel fractions are mapped the most accurately, indicating that the approach can be used successfully for fluvial gravel bar mapping. Endmember sets selected automatically perform slightly worse (MAE higher by at most 0.05) than sets selected manually based on high resolution reference data. Both Sentinel-2 and Landsat imagery can be used for accurate mapping with differences between the two remote sensing systems within 0.05 MAE. For the study area, the SSMA-based soft classification method is more accurate for land cover mapping than a Spectral Angle Mapping-based hard classification. The method is promising for an effective use in other cases where highly accurate subpixel information is needed, because it is able to detect small-scale changes that could go unnoticed with hard classification mapping. Numéro de notice : A2021-817 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2020.1811776 Date de publication en ligne : 30/08/2020 En ligne : https://doi.org/10.1080/22797254.2020.1811776 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98906
in European journal of remote sensing > vol 54 sup 1 (2021) . - pp 31 - 46[article]Delineation of vacant building land using orthophoto and lidar data object classification / Dejan Jenko in Geodetski vestnik, vol 63 n° 3 (September - November 2019)
[article]
Titre : Delineation of vacant building land using orthophoto and lidar data object classification Type de document : Article/Communication Auteurs : Dejan Jenko, Auteur ; Mojca Foški, Auteur ; Krištof Oštir, Auteur ; Žiga Kokalj, Auteur Année de publication : 2019 Article en page(s) : pp 344 - 378 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] classification orientée objet
[Termes IGN] couche thématique
[Termes IGN] détection du bâti
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] logement
[Termes IGN] orthoimage
[Termes IGN] SlovénieRésumé : (Auteur) Exact data about the location and area of vacant building land have been a major issue in several Slovene municipalities. This article deals with automatic vacant building land delineation. The presented methodology is based on the object-based classification that derives the land cover layer from orthophoto and laser scanning data. With post-processing and data cleaning in GIS, we create the vacant building land layer. The methodology was tested in study areas in the Municipality of Trebnje. The results were compared to the vacant building land layer generated by visual interpretation (manual vectorisation). We found that the presented methodology of automatic delineation of vacant buildings can speed up the processing and lower the cost of manual vectorisation and, in particular, data updating but we cannot completely replace manual work. Numéro de notice : A2019-500 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.15292/geodetski-vestnik.2019.03.344-378 En ligne : http://dx.doi.org/10.15292/geodetski-vestnik.2019.03.344-378 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93782
in Geodetski vestnik > vol 63 n° 3 (September - November 2019) . - pp 344 - 378[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 139-2019031 RAB Revue Centre de documentation En réserve L003 Disponible