Détail de l'auteur
Auteur Sepehr Honarparvar |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Improvement of a location-aware recommender system using volunteered geographic information / Sepehr Honarparvar in Geocarto international, vol 34 n° 13 ([15/10/2019])
[article]
Titre : Improvement of a location-aware recommender system using volunteered geographic information Type de document : Article/Communication Auteurs : Sepehr Honarparvar, Auteur ; Rouzbeh Forouzandeh Jonaghani, Auteur ; Ali Asghar Alesheikh, Auteur ; Behnam Atazadeh, Auteur Année de publication : 2019 Article en page(s) : pp1496 - 1513 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] actualité des données
[Termes IGN] approche participative
[Termes IGN] base de données localisées
[Termes IGN] classement
[Termes IGN] données localisées des bénévoles
[Termes IGN] OpenStreetMap
[Termes IGN] prise en compte du contexte
[Termes IGN] qualité des données
[Termes IGN] système de recommandation
[Termes IGN] utilisateurRésumé : (auteur) Recommender systems (RS), as supportive tools, filter information from a massive amount of data based on the determined preferences. Most of the RS require information about the context of users such as their locations. In such cases, location-aware recommender systems (LARS) can be employed to suggest more personalized items to the users. The most current research projects on LARS focus on the development of algorithms, evaluation methods and applications. However, the role of up-to-date spatial databases in LARS is not a well-researched area. The up-to-date spatial information would potentially improve the accuracy of items which are recommended by LARS. Volunteered geographic information (VGI) could be a low-cost source of up-to-date spatial information for LARS. This article proposes an approach to enrich spatial databases of LARS by VGI. Since not all records of VGI are fitted for use in LARS, a mechanism is developed to identify useful information. Some VGI data sets refer to existing spatial data in the database while other VGI data sets are shared for the first time. Therefore, the proposed method assessed the quality of VGI with reference source (for VGI which is existed in the database) and VGI without reference source (for VGI which is shared for the first time). To demonstrate the feasibility of the proposed approach, a mobile application has been developed to recommend suitable restaurants to the users based on their geospatial locations. The evaluation of the method indicates that VGI can potentially enhance the functionality of the LARS in predicting the users’ interests. Numéro de notice : A2019-510 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1493155 Date de publication en ligne : 10/09/2018 En ligne : https://doi.org/10.1080/10106049.2018.1493155 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93810
in Geocarto international > vol 34 n° 13 [15/10/2019] . - pp1496 - 1513[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2019131 RAB Revue Centre de documentation En réserve L003 Disponible