Détail de l'éditeur
Université Côte d'Azur
localisé à :
Nice
|
Documents disponibles chez cet éditeur (12)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : Deep learning architectures for onboard satellite image analysis Type de document : Thèse/HDR Auteurs : Gaétan Bahl, Auteur ; Florent Lafarge, Directeur de thèse Editeur : Nice : Université Côte d'Azur Année de publication : 2022 Importance : 120 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse de Doctorat de l'Université Côte d’Azur, Spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse d'image orientée objet
[Termes IGN] apprentissage profond
[Termes IGN] contour
[Termes IGN] détection d'objet
[Termes IGN] extraction du réseau routier
[Termes IGN] forêt
[Termes IGN] image satellite
[Termes IGN] nuage
[Termes IGN] régression
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau neuronal récurrent
[Termes IGN] segmentation sémantiqueIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Les progrès des satellites d'observation de la Terre à haute résolution et la réduction des temps de revisite introduite par la création de constellations de satellites ont conduit à la création quotidienne de grandes quantités d'images (des centaines de Teraoctets par jour). Simultanément, la popularisation des techniques de Deep Learning a permis le développement d'architectures capables d'extraire le contenu sémantique des images. Bien que ces algorithmes nécessitent généralement l'utilisation de matériel puissant, des accélérateurs d'inférence IA de faible puissance ont récemment été développés et ont le potentiel d'être utilisés dans les prochaines générations de satellites, ouvrant ainsi la possibilité d'une analyse embarquée des images satellite. En extrayant les informations intéressantes des images satellite directement à bord, il est possible de réduire considérablement l'utilisation de la bande passante, du stockage et de la mémoire. Les applications actuelles et futures, telles que la réponse aux catastrophes, l'agriculture de précision et la surveillance du climat, bénéficieraient d'une latence de traitement plus faible, voire d'alertes en temps réel. Dans cette thèse, notre objectif est double : D'une part, nous concevons des architectures de Deep Learning efficaces, capables de fonctionner sur des périphériques de faible puissance, tels que des satellites ou des drones, tout en conservant une précision suffisante. D'autre part, nous concevons nos algorithmes en gardant à l'esprit l'importance d'avoir une sortie compacte qui peut être efficacement calculée, stockée, transmise au sol ou à d'autres satellites dans une constellation. Tout d'abord, en utilisant des convolutions séparables en profondeur et des réseaux neuronaux récurrents convolutionnels, nous concevons des réseaux neuronaux de segmentation sémantique efficaces avec un faible nombre de paramètres et une faible utilisation de la mémoire. Nous appliquons ces architectures à la segmentation des nuages et des forêts dans les images satellites. Nous concevons également une architecture spécifique pour la segmentation des nuages sur le FPGA d'OPS-SAT, un satellite lancé par l'ESA en 2019, et réalisons des expériences à bord à distance. Deuxièmement, nous développons une architecture de segmentation d'instance pour la régression de contours lisses basée sur une représentation à coefficients de Fourier, qui permet de stocker et de transmettre efficacement les formes des objets détectés. Nous évaluons la performance de notre méthode sur une variété de dispositifs informatiques à faible puissance. Enfin, nous proposons une architecture d'extraction de graphes routiers basée sur une combinaison de Fully Convolutional Networks et de Graph Neural Networks. Nous montrons que notre méthode est nettement plus rapide que les méthodes concurrentes, tout en conservant une bonne précision. Note de contenu : 1. Introduction
1.1 Context and motivation
1.2 Methods and Challenges
1.3 Contributions and outline
2. On-board image segmentation with compact networks
2.1 Introduction
2.2 Related works
2.3 Proposed architectures
2.4 Experiments on cloud segmentation
2.5 Experiments on forest segmentation
2.6 Conclusion
3. Recurrent convolutional networks for semantic segmentation
3.1 Introduction
3.2 Method
3.3 Experiments
3.4 Conclusion and future works
4. Regression of compact object contours
4.1 Introduction
4.2 Related Work
4.3 Method
4.4 Experiments
4.5 Conclusion
5. Road graph extraction
5.1 Introduction
5.2 Related Works
5.3 Method
5.4 Experiments
5.5 Limitations
5.6 Other uses of our method
5.7 Conclusion
6. Conclusion and Perspectives
6.1 Summary
6.2 Limitations and perspectives
6.3 Publications
6.4 Carbon Impact StatementNuméro de notice : 26912 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Côte d'Azur : 2022 Organisme de stage : Inria Sophia-Antipolis Méditerranée nature-HAL : Thèse DOI : sans Date de publication en ligne : 27/09/2022 En ligne : https://tel.hal.science/tel-03789667v2 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101955 Characterization of mass variations in Antarctica in response to climatic fluctuations from space-based gravimetry and radar altimetry data / Athul Kaitheri (2021)
Titre : Characterization of mass variations in Antarctica in response to climatic fluctuations from space-based gravimetry and radar altimetry data Titre original : Caractérisation des variations de masse en Antarctique en réponse aux fluctuations climatiques à partir des données de gravimétrie spatiale et d’altimétrie radar Type de document : Thèse/HDR Auteurs : Athul Kaitheri, Auteur ; Anthony Mémin, Directeur de thèse ; Frédérique Rémy, Directeur de thèse Editeur : Nice : Université Côte d'Azur Année de publication : 2021 Importance : 138 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse présentée en vue de l’obtention du grade de docteur de l'Université de Côte d'Azur, Spécialité Sciences de la Planète et de l'UniversLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] altimétrie satellitaire par radar
[Termes IGN] analyse comparative
[Termes IGN] Antarctique
[Termes IGN] calotte glaciaire
[Termes IGN] changement climatique
[Termes IGN] données altimétriques
[Termes IGN] données GRACE
[Termes IGN] image Envisat
[Termes IGN] levé gravimétrique
[Termes IGN] masse
[Termes IGN] oscillation
[Termes IGN] régressionIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) Quantifying the mass balance of the Antarctic Ice Sheet (AIS), and the resulting sea level rise, requires an understanding of inter-annual variability and associated causal mechanisms. This has become more complex and challenging in the backdrop of global climate change. Very few studies have been exploring the influence of climate anomalies on the AIS and only a vague estimate of its impact is available. Usually changes to the ice sheet are quantified using observations from space-borne altimetry and gravimetry missions. In this study, we use data from Envisat (2002 to 2010) and Gravity Recovery and Climate Experiment (GRACE) (2002 to 2016) missions to estimate monthly elevation changes and mass changes, respectively. Similar estimates of the changes are made using weather variables (surface mass balance (SMB) and temperature) from a regional climate model (RACMO2.3p2) as inputs to a firn compaction (FC) model. Using the firn compaction model we were able to model the transformation of snow into glacial ice and hence estimate changes in the elevation of the ice sheet using climate parameters. Elevation changes estimated from different techniques are in good agreement with each other across the AIS especially in West Antarctica, Antarctic Peninsula, and along the coasts of East Antarctica. Inter-annual height change patterns are then extracted using for the first time an empirical mode decomposition followed by a reconstruction of modes. These signal on applying least square method revealed a sub-4-year periodic signal in the all the three distinct height change patterns. This was indicative of the influence of the El Niño Southern Oscillation (ENSO), a climate anomaly that alters, among other parameters, moisture transport, sea surface temperature, precipitation, in and around the AIS at similar frequency by alternating between warm and cold conditions. But there existed altering periodic behavior among inter annual height change patterns in the Antarctic Pacific (AP) sector which was found possibly by the influence of multiple climate drivers, like the Amundsen Sea Low (ASL) and the Southern Annular Mode (SAM). A combined analysis of the three distinct estimates using a PCA (principal component analysis) along the coast revealed similar findings. Height change anomaly also appears to traverse eastwards from Coats Land to Pine Island Glacier (PIG) regions passing through Dronning Maud Land (DML) and Wilkes Land (WL) in 6 to 8 years. This is indicative of climate anomaly traversal due to the Antarctic Circumpolar Wave (ACW) which propagates anomalies through the Southern Ocean in 8 to 10 years. Altogether, inter-annual variability in the SMB of the AIS is found to be modulated by multiple competing climate anomalies. Note de contenu : 1. Introduction
1.1 Climate change scenario
1.2 Antarctica
1.3 Thesis overview
2. Height changes from satellite observations
2.1 Observations
2.2 Satellite gravimetry
2.3 Satellite altimetry
3. Height changes from modelling
3.1 Climate Model
3.2 Height changes from RACMO2.3p2 outputs
3.3 Firn densification model
4. Inter-annual variability
4.1 Comparison between height changes
4.2 Extraction of inter annual signals
4.3 Characterizing inter-annual signals
4.4 Principal component analysis
5. Influence of climate anomalies
5.1 El Ni˜no Southern Oscillation
5.2 Southern Annular Mode
5.3 Amundsen Sea Low
5.4 Antarctic Circumpolar Wave
6. General conclusions
6.1 Conclusions
6.2 Future perspectivesNuméro de notice : 26825 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Thèse française Note de thèse : Thèse de doctorat : Sciences de la Planète et de l'Univers : Côte d'Azur : 2021 Organisme de stage : Géoazur nature-HAL : Thèse DOI : sans Date de publication en ligne : 19/04/2022 En ligne : https://tel.hal.science/tel-03644306/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100655
Titre : Geometric approximation of structured scenes from images Type de document : Thèse/HDR Auteurs : Muxingzi Li, Auteur ; Renaud Marlet, Directeur de la recherche Editeur : Nice : Université Côte d'Azur Année de publication : 2021 Importance : 122 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat résentée en vue de l’obtention du grade de docteur en Informatique de l’Université Côte d’AzurLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] approximation
[Termes IGN] chaîne de traitement
[Termes IGN] détection d'objet
[Termes IGN] extraction automatique
[Termes IGN] maillage
[Termes IGN] modélisation 3D
[Termes IGN] primitive géométrique
[Termes IGN] recalage de données localisées
[Termes IGN] reconstruction d'image
[Termes IGN] scène urbaine
[Termes IGN] segmentation d'image
[Termes IGN] semis de points
[Termes IGN] superposition de données
[Termes IGN] vectorisation
[Termes IGN] vision par ordinateurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Geometric approximation of urban objects with compact and accurate representation is a challenging problem that concerns both computer vision and computer graphics communities. Existing literature mainly focuses on reconstruction from high-quality point clouds obtained by laser scanning which are too costly for many practical scenarios. This motivates the investigation into the problem of geometric approximation from low-budget image data. Dense reconstruction from a collection of images is made possible by recent advances in multi-view stereo techniques, yet the resulting point cloud is often far from perfect for generating a compact model. In particular, our goal is to describe the captured scene with a compact and accurate representation. In this thesis, we propose two generic algorithms which address different aspects of image-based geometric approximation. First, we present an algorithm for extracting and vectorizing objects in images with polygons. Second, we present a global registration algorithm from multi-modal geometric data, typically 3D point clouds and surface meshes. Both approaches exploit detection of linear geometric primitives to approximate either 2D silhouettes with polygons consisting of line segments, or 3D point sets with a collection of planar shapes. The proposed algorithms could be used sequentially to form a pipeline for geometric approximation of an urban object from a set of image data, consisting of an overhead shot for coarse model extraction and multi-view stereo data for point cloud generation. We demonstrate the robustness and scalability of our methods for structured scenes and objects, as well as applicative potential for free-form objects. Note de contenu : 1- Introduction
2- Literature review
3- Polygonal image segmentation
4- 3D registration of multi-modal geometry
5- Application to floor modeling
6- Conclusion and perspectivesNuméro de notice : 28627 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Côte d'Azur : 2021 Organisme de stage : INRIA DOI : sans En ligne : https://tel.hal.science/tel-03388295v2/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99557
Titre : Mining the semantic Web for OWL axioms Titre original : Fouille du Web sémantique à la recherche d'axiomes OWL Type de document : Thèse/HDR Auteurs : Thu Huong Nguyen, Auteur ; Andrea Tettamanzi, Directeur de thèse Editeur : Nice : Université Côte d'Azur Année de publication : 2021 Importance : 175 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat présentée en vue de l’obtention du grade de docteur en Informatique de l’Université Côte d’AzurLangues : Français (fre) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] algorithme génétique
[Termes IGN] données ouvertes
[Termes IGN] exploration de données
[Termes IGN] logique floue
[Termes IGN] ontologie
[Termes IGN] OWL
[Termes IGN] RDF
[Termes IGN] théorie des possibilités
[Termes IGN] web des données
[Termes IGN] web sémantiqueIndex. décimale : THESE Thèses et HDR Résumé : (auteur) In the Semantic Web era, Linked Open Data (LOD) is its most successful implementation, which currently contains billions of RDF (Resource Data Framework) triples derived from multiple, distributed, heterogeneous sources. The role of a general semantic schema, represented as an ontology, is essential to ensure the correctness and consistency in LOD and make it possible to infer implicit knowledge by reasoning. The growth of LOD creates an opportunity for the discovery of
ontological knowledge from its raw RDF data itself to enrich relevant knowledge bases. In this work, we aim at discovering schema-level knowledge in the form of axioms encoded in OWL (Ontology Web Language) from RDF data. The approaches to automated generation of the axioms from recorded RDF facts on the Web may be regarded as a case of inductive reasoning and ontology learning. The instances, represented by RDF triples, play the role of specific observations, from which axioms can be extracted by generalization. Based on the insight that discovering new knowledge is essentially an evolutionary, whereby hypotheses are generated by some heuristic mechanism and then tested against the available evidence, so that only the best hypotheses survive, we propose a model applying Grammatical Evolution, one type of evolutionary algorithm, to mine OWL axioms from an RDF data repository. In addition, we specialize the model for the specific problem of learning OWL class disjointness axioms, along with the experiments performed on DBpedia, one of the prominent examples of LOD. Furthermore, we use different axiom scoring functions based on possibility theory, which are well-suited to the open world assumption scenario of LOD, to evaluate the quality of discovered axioms. Specifically, we proposed a set of measures to build objective functions based on single-objective and multi-objective models, respectively. Finally, in order to validate it, the performance of our approach is evaluated against subjective and objective benchmarks, and is also compared to the main state-of-the-art systems.Note de contenu : 1- Introduction
2- Foundation
3- Literature review
4- Learning OWL axioms from RDF data
5- Axiom evaluation
6- Grammatical evolution models toward class disjointness axiom discovery
7- A multi-objective GE approach to class disjointness axioms discovery
8- Conclusions & perspectivesNuméro de notice : 28614 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/SOCIETE NUMERIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Côte d'Azur : 2021 Organisme de stage : I3S DOI : sans En ligne : https://hal.science/tel-03406784/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99492 Planimetric simplification and lexicographic optimal chains for 3D urban scene reconstruction / Julien Vuillamy (2021)
Titre : Planimetric simplification and lexicographic optimal chains for 3D urban scene reconstruction Type de document : Thèse/HDR Auteurs : Julien Vuillamy, Auteur ; Pierre Alliez, Directeur de thèse Editeur : Nice : Université Côte d'Azur Année de publication : 2021 Importance : 129 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse Présentée en vue de l’obtention du grade de docteur en Informatique d’Université Côte d’AzurLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] complexe simplicial
[Termes IGN] géométrie de Riemann
[Termes IGN] homologie
[Termes IGN] maillage
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] optimisation (mathématiques)
[Termes IGN] programmation linéaire
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] scène urbaine
[Termes IGN] semis de points
[Termes IGN] simplification de surface
[Termes IGN] triangulation de DelaunayIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Creating mesh representations for urban scenes is a requirement for numerous modern applications of urban planning ranging from visualization, inspection, to simulation. Adding to the diversity of possible input data -- photography, laser-based acquisitions and existing geographical information system (GIS) data, the variety of urban scenes as well as the large-scale nature of the problem makes for a challenging line of research. Working towards an automatic approach to this problem suggests that a one-fits-all method is hardly realistic. Two independent approaches of reconstruction from point clouds have thus been investigated in this work, with radically different points of view intended to cover a large number of use cases. In the spirit of the GIS community, the first approach makes strong assumptions on the reconstructed scenes and creates a 2.5D piecewise-planar representation of buildings using an intermediate 2D cell decomposition. Constructing these decompositions from noisy or incomplete data often leads to overly complex representations, which lack the simplicity or regularity expected in this context of reconstruction. Loosely inspired by clustering problems such as mean-shift, the focus is put on simplifying such partitions by formulating an optimization process based on a tradeoff between attachment to the original partition and objectives striving to simplify and regularize the arrangement. This method involves working with point-line duality, defining local metrics for line movements and optimizing using Riemannian gradient descent. The second approach is intended to be used in contexts where the strong assumptions on the representation of the first approach do not hold. We strive here to be as general as possible and investigate the problem of point cloud meshing in the context of noisy or incomplete data. By considering a specific minimization, corresponding to lexicographic orderings on simplicial chains, polynomial-time algorithms finding lexicographic optimal chains, homologous to a given chain or bounded by a given chain, are derived from algorithms for the computation of simplicial persistent homology. For pseudomanifold complexes in codimension 1, leveraging duality and an augmented version of the disjoint-set data structure improves the complexity of these problem instances to quasi-linear time algorithms. By combining its uses with a sharp feature detector in the point cloud, we illustrate different use cases in the context of urban reconstruction. Note de contenu : 1- Introduction
2- State of the art and contributions
3- Parsimonious representations from 2D partitions
4- Dense representations from lexicographic optimal chains
5- Conclusion and perspectivesNuméro de notice : 28655 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Côte d'Azur : 2021 Organisme de stage : INRIA DOI : sans En ligne : https://hal.science/tel-03339931 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99797 Spectral variability in hyperspectral unmixing : Multiscale, tensor, and neural network-based approaches / Ricardo Augusto Borsoi (2021)PermalinkDe l’image optique "multi-stéréo" à la topographie très haute résolution et la cartographie automatique des failles par apprentissage profond / Lionel Matteo (2020)PermalinkPermalinkLearning and geometric approaches for automatic extraction of objects from remote sensing images / Nicolas Girard (2020)PermalinkPermalinkAmélioration de la vitesse et de la qualité d'image du rendu basé image / Rodrigo Ortiz Cayón (2017)PermalinkPermalink