Détail de l'auteur
Auteur Mengchao Zhou |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Robust multisource remote sensing image registration method based on scene shape similarity / Ming Hao in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 10 (October 2019)
[article]
Titre : Robust multisource remote sensing image registration method based on scene shape similarity Type de document : Article/Communication Auteurs : Ming Hao, Auteur ; Jian Jin, Auteur ; Mengchao Zhou, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 725 - 736 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] appariement de modèles conceptuels de données
[Termes IGN] coefficient de corrélation
[Termes IGN] figuré du terrain
[Termes IGN] image multibande
[Termes IGN] image radar moirée
[Termes IGN] niveau de gris (image)
[Termes IGN] points homologues
[Termes IGN] superposition d'images
[Termes IGN] temps de pose
[Termes IGN] transformation linéaireRésumé : (Auteur) Image registration is an indispensable component of remote sensing applications, such as disaster monitoring, change detection, and classification. Grayscale differences and geometric distortions often occur among multisource images due to their different imaging mechanisms, thus making it difficult to acquire feature points and match corresponding points. This article proposes a scene shape similarity feature (SSSF) descriptor based on scene shape features and shape context algorithms. A new similarity measure called SSSFncc is then defined by computing the normalized correlation coefficient of the SSSF descriptors between multisource remote sensing images. Furthermore, the tie points between the reference and the sensed image are extracted via a template matching strategy. A global consistency check method is then used to remove the mismatched tie points. Finally, a piecewise linear transform model is selected to rectify the remote sensing image. The proposed SSSFncc aims to extract the scene shape similarity between multisource images. The accuracy of the proposed SSSFncc is evaluated using five pairs of experimental images from optical, synthetic aperture radar, and map data. Registration results demonstrate that the SSSFncc similarity measure is robust enough for complex nonlinear grayscale differences among multisource remote sensing images. The proposed method achieves more reliable registration outcomes compared with other popular methods. Numéro de notice : A2019-521 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.10.725 Date de publication en ligne : 01/10/2019 En ligne : https://doi.org/10.14358/PERS.85.10.725 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93989
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 10 (October 2019) . - pp 725 - 736[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019101 SL Revue Centre de documentation Revues en salle Disponible