Détail de l'auteur
Auteur Shengzhou Xiong |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Accurate detection of built-up areas from high-resolution remote sensing imagery using a fully convolutional network / Yihua Tan in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 10 (October 2019)
[article]
Titre : Accurate detection of built-up areas from high-resolution remote sensing imagery using a fully convolutional network Type de document : Article/Communication Auteurs : Yihua Tan, Auteur ; Shengzhou Xiong, Auteur ; Zhi Li, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 737 - 752 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection du bâti
[Termes IGN] extraction automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à haute résolution
[Termes IGN] image Worldview
[Termes IGN] segmentation sémantiqueRésumé : (Auteur) The analysis of built-up areas has always been a popular research topic for remote sensing applications. However, automatic extraction of built-up areas from a wide range of regions remains challenging. In this article, a fully convolutional network (FCN)–based strategy is proposed to address built-up area extraction. The proposed algorithm can be divided into two main steps. First, divide the remote sensing image into blocks and extract their deep features by a lightweight multi-branch convolutional neural network (LMB-CNN). Second, rearrange the deep features into feature maps that are fed into a well-designed FCN for image segmentation. Our FCN is integrated with multi-branch blocks and outputs multi-channel segmentation masks that are utilized to balance the false alarm and missing alarm. Experiments demonstrate that the overall classification accuracy of the proposed algorithm can achieve 98.75% in the test data set and that it has a faster processing compared with the existing state-of-the-art algorithms. Numéro de notice : A2019-522 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.10.737 Date de publication en ligne : 01/10/2019 En ligne : https://doi.org/10.14358/PERS.85.10.737 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93992
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 10 (October 2019) . - pp 737 - 752[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019101 SL Revue Centre de documentation Revues en salle Disponible