Détail de l'auteur
Auteur Shijie Wang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Assessing spatial-temporal evolution processes and driving forces of karst rocky desertification / Fei Chen in Geocarto international, vol 36 n° 3 ([15/02/2021])
[article]
Titre : Assessing spatial-temporal evolution processes and driving forces of karst rocky desertification Type de document : Article/Communication Auteurs : Fei Chen, Auteur ; Shijie Wang, Auteur ; Xiaoyong Bai, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 262 - 280 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse spatio-temporelle
[Termes IGN] carte d'utilisation du sol
[Termes IGN] Chine
[Termes IGN] classification et arbre de régression
[Termes IGN] désertification
[Termes IGN] données spatiotemporelles
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] karst
[Termes IGN] lithologieRésumé : (auteur) Karst Rocky Desertification (KRD) has become the most serious ecological disaster in Southwest China. We used the data of Thematic Mapper (TM) images from 1990, 1995, 2000, 2004, and 2011 and the 2016 Operational Land Imager (OLI) image. These sensing images were pre-processed by removing non-karst areas based on lithology and cutting away the land types impossibly generating KRD from land use maps. Then, we used a Classification And Regression Tree (CART) to classify the KRD. We want to improve the interpretation accuracy of KRD through the above steps. The results were as follows: (1) The KRD experiences the evolution process of ‘first deterioration and then improvement’. The rate is −4.94 km2.a−1 over a period of 1990 to 2004, and the rate is 36.48 km2.a−1 from 2004 to 2016; (2) The most influential factors causing KRD formation are the lithology and the resident population density, with contribution rates of 30.17% and 25.86%, respectively. Numéro de notice : A2021-140 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1595175 Date de publication en ligne : 18/07/2019 En ligne : https://doi.org/10.1080/10106049.2019.1595175 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97036
in Geocarto international > vol 36 n° 3 [15/02/2021] . - pp 262 - 280[article]Residences information extraction from Landsat imagery using the multi-parameter decision tree method / Yujie Yang in Geocarto international, vol 34 n° 14 ([30/10/2019])
[article]
Titre : Residences information extraction from Landsat imagery using the multi-parameter decision tree method Type de document : Article/Communication Auteurs : Yujie Yang, Auteur ; Shijie Wang, Auteur ; Xiaoyong Bai, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 1621 - 1633 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] albedo
[Termes IGN] analyse spectrale
[Termes IGN] classification par arbre de décision
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] eau
[Termes IGN] image Landsat-OLI
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] occupation du sol
[Termes IGN] ombre
[Termes IGN] série temporelle
[Termes IGN] seuillage d'imageRésumé : (auteur) The rapid and accurate grasp of changes in residences is crucial for urban planning and urbanisation. However, the traditional methods for extracting residences exists several problems, which lead to inaccurate extraction results. In this study, the Landsat image is used to establish a new method for extracting the residences quickly and accurately. The specific steps are as follows: (1) We calculate surface albedo to exclude the interference of waters and shadows; (2) Using single-band threshold method, we eliminate the interference of shadows; (3) Normalized Difference Vegetation Index is calculated to exclude the effects of vegetation; (4) Roads are removed by calculating the shape index. Verification shows that the accuracy of this extraction method is 92.81%, which is more accurate than the traditional methods and solves the problems existed in the traditional methods. This novel method is a new reference for other land cover research on the technical aspect. Numéro de notice : A2019-528 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1494760 Date de publication en ligne : 07/09/2018 En ligne : https://doi.org/10.1080/10106049.2018.1494760 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94106
in Geocarto international > vol 34 n° 14 [30/10/2019] . - pp 1621 - 1633[article]