Détail de l'auteur
Auteur Dino Lenco |
Documents disponibles écrits par cet auteur (3)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A CNN-based approach for the estimation of canopy heights and wood volume from GEDI waveforms / Ibrahim Fayad in Remote sensing of environment, vol 265 (November 2021)
[article]
Titre : A CNN-based approach for the estimation of canopy heights and wood volume from GEDI waveforms Type de document : Article/Communication Auteurs : Ibrahim Fayad, Auteur ; Dino Lenco, Auteur ; Nicolas Baghdadi, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 112652 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] Brésil
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Eucalyptus (genre)
[Termes IGN] forme d'onde
[Termes IGN] Global Ecosystem Dynamics Investigation lidar
[Termes IGN] hauteur des arbres
[Termes IGN] modèle de croissance végétale
[Termes IGN] semis de points
[Termes IGN] volume en boisRésumé : (auteur) Full waveform (FW) LiDAR systems have proven their effectiveness to map forest biophysical variables in the last two decades, owing to their ability of measuring, with high accuracy, forest vertical structures. The Global Ecosystem Dynamics Investigation (GEDI) system on board the International Space Station (ISS) is the latest FW spaceborne LiDAR instrument for the continuous observation of Earth's forests. FW systems rely on very sophisticated pre-processing steps to generate a priori metrics in order to leverage their capabilities for the accurate estimation of the aforementioned forest characteristics. The ever-expanding volume of acquired GEDI data, which to date comprises more than 25 billion acquired unfiltered shots, and along with the pre-processed data, amounting to more than 90 TB of data, raises new challenges in terms of adapted preprocessing methods for the suitable exploitation of such a huge and complex amount of LiDAR data. To overcome the issues related to the generation of relevant metrics from GEDI data, we propose a new metric-free approach to estimate canopy dominant heights (Hdom) and wood volume (V) of Eucalyptus plantations over five different regions in Brazil. To avoid metric computation, we leverage deep learning techniques and, more in detail, convolutional neural networks with the aim to analyze the GEDI Level 1B geolocated waveforms. Performance comparisons were conducted between four convolutional neural network (CNN) variants using GEDI waveform data (either untouched, or subsetted) and a metric based Random Forest regressor (RF). Additionally, we tested if our framework can improve the generalization of the models to different distant regions. First, the models were trained using data from all the study regions. Cross validated results showed that the CNN based models compared well against their RF counterpart for both Hdom and V. The RMSE on the estimation of Hdom from the CNN based models varied between 1.54 and 1.94 m with a coefficient of determination (R2) between 0.86 and 0.91, while the RF model produced an accuracy on Hdom estimates of 1.45 m (R2 = 0.92). For V, CNN based estimations ranged from 27.76 to 33.33 m3.ha−1 (R2 between 0.82 and 0.88), while for RF, the RMSE was 27.61 m3.ha−1 (R2 = 0.88). Next, model generalization was assessed by means of a spatial transfer experiment. For Hdom, both the CNN and RF approaches showed similar performances to a global model, however, the CNN based approach showed higher variability on the estimation accuracy, and the variability was related to the forest structure between the trained and tested data (similar tree heights yield better accuracies). For the estimation of V, considering both approaches, the accuracy was dependent on the allometric relationship between Hdom and V in the training and testing regions while lower accuracies on V were obtained when the testing and training regions exhibited a different allometric relationship. Numéro de notice : A2021-869 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2021.112652 Date de publication en ligne : 31/08/2021 En ligne : https://doi.org/10.1016/j.rse.2021.112652 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99118
in Remote sensing of environment > vol 265 (November 2021) . - n° 112652[article]Amélioration des systèmes de suivi des cultures à l’aide de la télédétection multi-source et des techniques d’apprentissage profond / Yawogan Gbodjo (2021)
Titre : Amélioration des systèmes de suivi des cultures à l’aide de la télédétection multi-source et des techniques d’apprentissage profond Type de document : Thèse/HDR Auteurs : Yawogan Gbodjo, Auteur ; Dino Lenco, Directeur de thèse Editeur : Montpellier : Université de Montpellier Année de publication : 2021 Importance : 165 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse soutenue pour obtenir le grade de Docteur en Informatique de l'Université de MontpellierLangues : Français (fre) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] classification dirigée
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] image PlanetScope
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice de végétation
[Termes IGN] occupation du sol
[Termes IGN] production agricole
[Termes IGN] rendement agricole
[Termes IGN] série temporelle
[Termes IGN] surface cultivéeIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Les systèmes de suivi des cultures jouent un rôle essentiel dans l'évaluation de la production agricole dans le monde. De nos jours, la disponibilité de plusieurs sources d'information satellitaire à large échelle, à haute résolution spatiale et à forte répétitivité temporelle, conjointe à l'essor des techniques d'apprentissage profond, offrent de nouvelles perspectives aux systèmes de suivi des cultures pour l'évaluation de la production agricole. Dans cette thèse, nous explorons des pistes méthodologiques pour améliorer le suivi de la production agricole à partir de la télédétection multi-source et des techniques d'apprentissage profond. Nous proposons deux méthodes pour caractériser l'occupation du sol et identifier les surfaces cultivées. La première approche est basée sur des réseaux de neurones récurrents équipés de mécanismes d'attention, employant des séries temporelles multi-sources radar et optique ainsi que des connaissances spécifiques de domaine. La seconde approche repose sur des réseaux de neurones convolutifs et explore davantage la combinaison multi-source et surtout multi-échelle grâce à l'intégration d'une source optique à très haute résolution spatiale. Nous évaluons ces méthodes à des échelles territoriale et locale en ayant systématiquement un regard croisé sur des sites d'études contrastés en agriculture conventionnelle et petite agriculture familiale. Nous menons également un travail d'investigation sur l'estimation et la prévision des rendements des surfaces cultivées, à l'échelle locale de la petite agriculture familiale en employant des séries temporelles multi-sources radar et optique. Dans ce contexte en outre limité par la disponibilité de données de référence, nous évaluons le potentiel de méthodes d'apprentissage profond par rapport à des approches traditionnellement utilisées. Globalement, l'évaluation des approches proposées pour identifier les surfaces cultivées montre que les techniques d'apprentissage profond semblent mieux adaptées que les méthodes traditionnelles d'apprentissage automatique pour tirer parti de la complémentarité des données multi-sources, multi-temporelles et multi-échelles à mesure qu'il y ait une quantité suffisante de données pour leur entraînement supervisé. Le travail d'investigation réalisé pour l'estimation et la prévision des rendements n'a par contre pas révélé de plus-value manifeste dans l'emploi de ces méthodes. Dans ce dernier cas, le contexte limité en données d'entraînement semble en être la principale explication. Note de contenu : Introduction
1- Télédétection et apprentissage automatique
2- Sites d’étude et données utilisées
3- Caractérisation de l’occupation du sol
4- Suivi des rendements en petite agriculture familiale
Conclusion et PerspectivesNuméro de notice : 15240 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Montpellier : 2021 Organisme de stage : TETIS DOI : sans En ligne : https://tel.hal.science/tel-03589421/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100474 Combining Sentinel-1 and Sentinel-2 Satellite image time series for land cover mapping via a multi-source deep learning architecture / Dino Lenco in ISPRS Journal of photogrammetry and remote sensing, Vol 158 (December 2019)
[article]
Titre : Combining Sentinel-1 and Sentinel-2 Satellite image time series for land cover mapping via a multi-source deep learning architecture Type de document : Article/Communication Auteurs : Dino Lenco, Auteur ; Roberto Interdonato, Auteur ; Raffaele Gaetano, Auteur ; Ho Tong Minh Dinh, Auteur Année de publication : 2019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes IGN] apprentissage profond
[Termes IGN] Burkina Faso
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] fusion d'images
[Termes IGN] image à haute résolution
[Termes IGN] image multibande
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] occupation du sol
[Termes IGN] Réunion, île de la
[Termes IGN] série temporelle
[Termes IGN] utilisation du solRésumé : (auteur) The huge amount of data currently produced by modern Earth Observation (EO) missions has allowed for the design of advanced machine learning techniques able to support complex Land Use/Land Cover (LULC) mapping tasks. The Copernicus programme developed by the European Space Agency provides, with missions such as Sentinel-1 (S1) and Sentinel-2 (S2), radar and optical (multi-spectral) imagery, respectively, at 10 m spatial resolution with revisit time around 5 days. Such high temporal resolution allows to collect Satellite Image Time Series (SITS) that support a plethora of Earth surface monitoring tasks. How to effectively combine the complementary information provided by such sensors remains an open problem in the remote sensing field. In this work, we propose a deep learning architecture to combine information coming from S1 and S2 time series, namely TWINNS (TWIn Neural Networks for Sentinel data), able to discover spatial and temporal dependencies in both types of SITS. The proposed architecture is devised to boost the land cover classification task by leveraging two levels of complementarity, i.e., the interplay between radar and optical SITS as well as the synergy between spatial and temporal dependencies. Experiments carried out on two study sites characterized by different land cover characteristics (i.e., the Koumbia site in Burkina Faso and Reunion Island, a overseas department of France in the Indian Ocean), demonstrate the significance of our proposal. Numéro de notice : A2019-544 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.09.016 Date de publication en ligne : 27/09/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.09.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94186
in ISPRS Journal of photogrammetry and remote sensing > Vol 158 (December 2019)[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019121 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019123 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019122 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt