Détail de l'auteur
Auteur Michael Cressey |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Real-time mapping of natural disasters using citizen update streams / Iranga Subasinghe in International journal of geographical information science IJGIS, vol 34 n° 2 (February 2020)
[article]
Titre : Real-time mapping of natural disasters using citizen update streams Type de document : Article/Communication Auteurs : Iranga Subasinghe, Auteur ; Silvia Nittel, Auteur ; Michael Cressey, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 393 - 421 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] approche participative
[Termes IGN] cartographie collaborative
[Termes IGN] catastrophe naturelle
[Termes IGN] classification par réseau neuronal
[Termes IGN] diagramme de Voronoï
[Termes IGN] données localisées des bénévoles
[Termes IGN] effondrement de terrain
[Termes IGN] incendie
[Termes IGN] inondation
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] système multi-agents
[Termes IGN] tempête
[Termes IGN] temps réel
[Termes IGN] ville intelligenteRésumé : (auteur) Natural disasters such as flooding, wildfires, and mudslides are rare events, but they affect citizens at unpredictable times and the impact on human life can be significant. Citizens located close to events can provide detailed, real-time data streams capturing their event response. Instead of visualizing individual updates, an integrated spatiotemporal map yields ‘big picture’ event information. We investigate the question of whether information from affected citizens is sufficient to generate a map of an unfolding natural disaster. We built the Citizen Disaster Reaction Multi-Agent Simulation (CDR-MAS), a multi-agent system that simulates the reaction of citizens to a natural disaster in an urban region. We proposed an rkNN classification algorithm to aggregate the update streams into a series of colored Voronoi event maps. We simulated the 2018 Montecito Creek mudslide and customized the CDR-MAS with the local environment to systematically generate stream data sets. Our experimental evaluation showed that event mapping based on citizen update streams is significantly influenced by the amount of citizen participation and movement. Compared with a baseline of 100% participation, with 40% citizen participation, the event region was predicted with 40% accuracy, showing that citizen update streams can provide timely information in a smart city. Numéro de notice : A2020-031 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1639185 Date de publication en ligne : 15/07/2019 En ligne : https://doi.org/10.1080/13658816.2019.1639185 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94486
in International journal of geographical information science IJGIS > vol 34 n° 2 (February 2020) . - pp 393 - 421[article]