Détail de l'auteur
Auteur Michael G. Wing |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Forest inventory sensitivity to UAS-based image processing algorithms / Bonifasius Maturbongs in Annals of forest research, vol 62 n° 1 (January - June 2019)
[article]
Titre : Forest inventory sensitivity to UAS-based image processing algorithms Type de document : Article/Communication Auteurs : Bonifasius Maturbongs, Auteur ; Michael G. Wing, Auteur ; Bogdan M. Strimbu, Auteur ; Jon Burnett, Auteur Année de publication : 2019 Article en page(s) : pp 87 - 108 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] données lidar
[Termes IGN] gestion forestière
[Termes IGN] hauteur des arbres
[Termes IGN] image captée par drone
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] photographie aérienne
[Termes IGN] Pseudotsuga menziesii
[Termes IGN] segmentation dynamique
[Termes IGN] semis de points
[Termes IGN] structure-from-motionRésumé : (auteur) Frequent and accurate estimation of forest structure parameters, such as number of trees per hectare or total height, are mandatory for sustainable forest management. Unmanned aircraft system (UAS) equipped with inexpensive sensors can be used to monitor and measure forest structure. The detailed information provided by the UAS allows tree level forest inventory. However, tree identification depends on a variety of parameters defining the image processing and tree segmentation algorithms. The objective of our study was to identify parameter combinations that accurately delineated trees and their heights. We evaluated the impact of different tree segmentation and point cloud generation algorithms on forest inventory from imagery collected with a UAS over a mature Douglas-fir plantation forest. We processed the images with two commonly used commercial software packages, Agisoft PhotoScan and Pix4Dmapper, both implementing image processing algorithms called Structure from Motion. For each software we generated photogrammetric point clouds by varying the parameters defining the implementation. We segmented individual trees and heights using three tree algorithms: Variable Window Filter, Graph-Theoretical, and Watershed Segmentation. We assessed the impact of image processing algorithms on forest inventory by comparing the estimated trees with trees manually identified from the point clouds. We found that the type of tree segmentation and image processing algorithms have a significant effect in accurately identifying trees. For tree height estimation, we found strong evidence that image processing algorithms had significant effects, whereas tree segmentation algorithms did not significantly affect tree height estimation.These findings may be of interest to others that are using high-resolution spatial imagery to estimate forest inventory parameters. Numéro de notice : A2019-580 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : 10.15287/afr.2018.1282 Date de publication en ligne : 30/07/2019 En ligne : http://dx.doi.org/10.15287/afr.2018.1282 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94487
in Annals of forest research > vol 62 n° 1 (January - June 2019) . - pp 87 - 108[article]