Détail de l'auteur
Auteur Zhifeng Xiao |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Context-aware convolutional neural network for object detection in VHR remote sensing imagery / Yiping Gong in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
[article]
Titre : Context-aware convolutional neural network for object detection in VHR remote sensing imagery Type de document : Article/Communication Auteurs : Yiping Gong, Auteur ; Zhifeng Xiao, Auteur ; Xiaowei Tan, Auteur Année de publication : 2020 Article en page(s) : pp 34 - 44 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] description multiniveau
[Termes IGN] détection d'objet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à très haute résolution
[Termes IGN] prise en compte du contexte
[Termes IGN] vision par ordinateur
[Termes IGN] zone d'intérêtRésumé : (auteur) Object detection in very-high-resolution (VHR) remote sensing imagery remains a challenge. Environmental factors, such as illumination intensity and weather, reduce image quality, resulting in poor feature representation and limited detection accuracy. To enrich the feature representation and mine the underlying context information among objects, this article proposes a context-aware convolutional neural network (CA-CNN) model for object detection that includes proposal generation, context feature extraction, feature fusion, and classification. During feature extraction, we propose integrating a context-regions-of-interests (Context-RoIs) mining layer into the CNN model and extracting context features by mapping Context-RoIs mined from the foreground proposals to multilevel feature maps. Finally, the context features extracted from multilevel layers are fused into a single layer, and the proposals represented by the fused features are classified by a softmax classifier. In this article, through numerous experiments, we thoroughly explore the influence of key factors, such as Context-RoIs, different feature scales, and different spatial context window sizes. Because of the end-to-end network design approach, our proposed model simultaneously maintains high efficiency and effectiveness. We conducted all model testing on the public NWPU VHR-10 data set. The experimental results demonstrate that our proposed CA-CNN model achieves significantly improved model performance and better detection results compared with the state-of-the-art methods. Numéro de notice : A2020-038 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2930246 Date de publication en ligne : 23/09/2019 En ligne : http://doi.org/10.1109/TGRS.2019.2930246 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94492
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 1 (January 2020) . - pp 34 - 44[article]