Détail de l'auteur
Auteur Ting Yang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Sea-land segmentation using deep learning techniques for Landsat-8 OLI imagery / Ting Yang in Marine geodesy, Vol 43 n° 2 (March 2020)
[article]
Titre : Sea-land segmentation using deep learning techniques for Landsat-8 OLI imagery Type de document : Article/Communication Auteurs : Ting Yang, Auteur ; Zhonghua Hong, Auteur ; Yun Zhang, Auteur Année de publication : 2020 Article en page(s) : pp 105 - 133 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image Landsat-OLI
[Termes IGN] littoral
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantique
[Termes IGN] trait de côteRésumé : (auteur) Automated coastline extraction from optical satellites is fundamental to coastal mapping, and sea-land segmentation is the core technology of coastline extraction. Deep convolutional neural networks (DCNNs) have performed well in semantic segmentation in recent years. However, sea-land segmentation using deep learning techniques remains a challenging task, due to the lack of a benchmark dataset and the difficulty of deciding which semantic segmentation model to use. We present a comparative framework of sea-land segmentation to Landsat-8 OLI imagery via semantic segmentation in deep learning techniques. Three issues are investigated: (1) constructing a sea-land benchmark dataset using Landsat-8 Operational Land Imager (OLI) imagery consisting of 18,000 km2 of coastline around China; (2) evaluating the feasibility and performance of sea-land segmentation by comparing the accuracy assessment, time complexity, spatial complexity and stability of state-of-the-art DCNNs methods; (3) choosing the most suitable semantic segmentation model for sea-land segmentation in accordance with Akaike information criterion (AIC) and Bayesian information criterion (BIC) model selection. Results show that the average test accuracy achieves over 99% accuracy, and the mean Intersection over Unions (mean IoU) is above 92%. These findings demonstrate that the Fully Convolutional DenseNet (FC-enseNet) performs better than other state-of-the-art methods in sea-land segmentation, based on both AIC and BIC. Considering training time efficiency, DeeplabV3+ performs better for sea-land segmentation. The sea-land segmentation benchmark dataset is available at: https://pan.baidu.com/s/1BlnHiltOLbLKe4TG8lZ5xg. Numéro de notice : A2020-220 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01490419.2020.1713266 Date de publication en ligne : 20/01/2020 En ligne : https://doi.org/10.1080/01490419.2020.1713266 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94917
in Marine geodesy > Vol 43 n° 2 (March 2020) . - pp 105 - 133[article]