Détail de l'auteur
Auteur Milap Chand Sharma |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Landslide susceptibility mapping using maximum entropy and support vector machine models along the highway corridor, Garhwal Himalaya / Vijendra Kumar Pandey in Geocarto international, vol 35 n° 2 ([01/02/2020])
[article]
Titre : Landslide susceptibility mapping using maximum entropy and support vector machine models along the highway corridor, Garhwal Himalaya Type de document : Article/Communication Auteurs : Vijendra Kumar Pandey, Auteur ; Hamid Reza Pourghasemi, Auteur ; Milap Chand Sharma, Auteur Année de publication : 2020 Article en page(s) : pp 168 - 187 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] autoroute
[Termes IGN] classification dirigée
[Termes IGN] effondrement de terrain
[Termes IGN] entropie maximale
[Termes IGN] Himalaya
[Termes IGN] image IRS-LISS
[Termes IGN] image Landsat-8
[Termes IGN] Linear Imaging Self-Scanning System
[Termes IGN] modèle statistique
[Termes IGN] mousson
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] séparateur à vaste marge
[Termes IGN] test statistiqueRésumé : (Auteur) The main objective of this study to produce landslide susceptibility zones using maximum entropy (MaxEnt) and support vector machine (SVM) data-driven models along the Tipari to Ghuttu highway corridors in the Garhwal Himalaya. A landslide inventory has been prepared through field surveys and LISS-IV and Landsat 8 satellite images. The datasets of 85 landslides were categorised into training and test sets. In this study 11 landslide conditioning variables were used that are; altitude, slope angle, aspect, plan curvature, topographic wetness index, normalised difference vegetation index (NDVI), land use, soil texture, distance to rivers, distance to faults, and distance to the road. The result produced using MaxEnt and SVM model were subsequently validated using receiver operating characteristics curve (ROC) with test sets of landslide dataset. Both the models have good prediction capabilities. MaxEnt has ROC value of 0.78 while SVM has the highest prediction rate of 0.85. Numéro de notice : A2020-036 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1510038 Date de publication en ligne : 20/09/2018 En ligne : https://doi.org/10.1080/10106049.2018.1510038 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94519
in Geocarto international > vol 35 n° 2 [01/02/2020] . - pp 168 - 187[article]