Détail de l'auteur
Auteur Gonzalo Mateo-García |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Transferring deep learning models for cloud detection between Landsat-8 and Proba-V / Gonzalo Mateo-García in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
[article]
Titre : Transferring deep learning models for cloud detection between Landsat-8 and Proba-V Type de document : Article/Communication Auteurs : Gonzalo Mateo-García, Auteur ; Valero Laparra, Auteur ; Dan López-Puigdollers, Auteur ; Luis Gómez-Chova, Auteur Année de publication : 2020 Article en page(s) : pp 1 - 17 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage par transformation
[Termes IGN] apprentissage profond
[Termes IGN] conversion de données
[Termes IGN] détection des nuages
[Termes IGN] échantillonnage de données
[Termes IGN] image Landsat-8
[Termes IGN] image multibande
[Termes IGN] image PROBA
[Termes IGN] jeu de données
[Termes IGN] masque
[Termes IGN] réseau neuronal convolutif
[Termes IGN] seuillage de pointsRésumé : (Auteur) Accurate cloud detection algorithms are mandatory to analyze the large streams of data coming from the different optical Earth observation satellites. Deep learning (DL) based cloud detection schemes provide very accurate cloud detection models. However, training these models for a given sensor requires large datasets of manually labeled samples, which are very costly or even impossible to create when the satellite has not been launched yet. In this work, we present an approach that exploits manually labeled datasets from one satellite to train deep learning models for cloud detection that can be applied (or transferred) to other satellites. We take into account the physical properties of the acquired signals and propose a simple transfer learning approach using Landsat-8 and Proba-V sensors, whose images have different but similar spatial and spectral characteristics. Three types of experiments are conducted to demonstrate that transfer learning can work in both directions: (a) from Landsat-8 to Proba-V, where we show that models trained only with Landsat-8 data produce cloud masks 5 points more accurate than the current operational Proba-V cloud masking method, (b) from Proba-V to Landsat-8, where models that use only Proba-V data for training have an accuracy similar to the operational FMask in the publicly available Biome dataset (87.79–89.77% vs 88.48%), and (c) jointly from Proba-V and Landsat-8 to Proba-V, where we demonstrate that using jointly both data sources the accuracy increases 1–10 points when few Proba-V labeled images are available. These results highlight that, taking advantage of existing publicly available cloud masking labeled datasets, we can create accurate deep learning based cloud detection models for new satellites, but without the burden of collecting and labeling a large dataset of images. Numéro de notice : A2020-043 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.11.024 Date de publication en ligne : 10/12/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.11.024 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94522
in ISPRS Journal of photogrammetry and remote sensing > vol 160 (February 2020) . - pp 1 - 17[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020021 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020023 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt