Détail de l'auteur
Auteur Kasper Johansen |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Mapping the condition of macadamia tree crops using multi-spectral UAV and WorldView-3 imagery / Kasper Johansen in ISPRS Journal of photogrammetry and remote sensing, vol 165 (July 2020)
[article]
Titre : Mapping the condition of macadamia tree crops using multi-spectral UAV and WorldView-3 imagery Type de document : Article/Communication Auteurs : Kasper Johansen, Auteur ; Qibin Duan, Auteur ; Yu-Hsuan Tu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 28 - 40 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Australie
[Termes IGN] carte de la végétation
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données multitemporelles
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] image Worldview
[Termes IGN] production agricole végétale
[Termes IGN] surveillance de la végétationRésumé : (auteur) Australia is one of the world’s largest producers of macadamia nuts. As macadamia trees can take up to 15 years to mature and produce maximum yield, it is important to optimize tree condition. Field based assessment of macadamia tree condition is time-consuming and often inconsistent. Using remotely sensed imagery may allow for faster, more extensive, and more consistent assessment of macadamia tree condition. To identify individual macadamia tree crowns, high spatial resolution imagery is required. Hence, the objective of this work was to develop and test an approach to map the condition of individual macadamia tree crowns using both multi-spectral Unmanned Aerial Vehicle (UAV) and WorldView-3 imagery for different macadamia varieties and three different sites located near Bundaberg, Australia. A random forest classifier, based on all available spectral bands and selected vegetation indices was used to predict five condition categories, ranging from excellent (category 1) to poor (category 5). Various combinations of the developed models were tested between the three sites and over time. The results showed that the multi-spectral WorldView-3 imagery produced the lowest out of bag (OOB) classification errors in most cases. However, for both the UAV and the WorldView-3 imagery, more than 98.5% of predicted macadamia condition categories were either correctly mapped or offset by a single category out of the five condition categories (excellent, good, moderate, fair and poor) for trees of the same variety and at one point in time. Multi-temporally, the WorldView-3 imagery performed better than the UAV data for predicting the condition of the same macadamia tree variety. Applying a model from one site to another site with the same macadamia tree variety produced OOB classification between 31.20 and 42.74%, but with >98.63% of trees predicted within a single condition category. Importantly, models trained based on one type of macadamia tree variety could not be successfully applied to a site with another variety. The developed classification models may be used as a decision and management support tool for the macadamia industry to inform management practices and improve on-demand irrigation, fertilization, and pest inspection at the individual tree level. Numéro de notice : A2020-277 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.01 Date de publication en ligne : 20/05/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.017 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95093
in ISPRS Journal of photogrammetry and remote sensing > vol 165 (July 2020) . - pp 28 - 40[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020071 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020073 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Optimising drone flight planning for measuring horticultural tree crop structure / Yu-Hsuan Tu in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
[article]
Titre : Optimising drone flight planning for measuring horticultural tree crop structure Type de document : Article/Communication Auteurs : Yu-Hsuan Tu, Auteur ; Stuart Phinn, Auteur ; Kasper Johansen, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 83 - 96 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] correction d'image
[Termes IGN] détection d'arbres
[Termes IGN] distorsion d'image
[Termes IGN] étalonnage de chambre métrique
[Termes IGN] horticulture
[Termes IGN] image captée par drone
[Termes IGN] MicMac
[Termes IGN] obturateur
[Termes IGN] photogrammétrie aérienne
[Termes IGN] plan de vol
[Termes IGN] point d'appui
[Termes IGN] qualité d'image
[Termes IGN] Queensland (Australie)
[Termes IGN] semis de pointsRésumé : (Auteur) In recent times, multi-spectral drone imagery has proved to be a useful tool for measuring tree crop canopy structure. In this context, establishing the most appropriate flight planning variable settings is an essential consideration due to their controls on the quality of the imagery and derived maps of tree and crop biophysical properties. During flight planning, variables including flight altitude, image overlap, flying direction, flying speed and solar elevation, require careful consideration in order to produce the most suitable drone imagery. Previous studies have assessed the influence of individual variables on image quality, but the interaction of multiple variables has yet to be examined. This study assesses the influence of several flight variables on measures of data quality in each processing step, i.e. photo alignment, point cloud densification, 3D model building, and ortho-mosaicking. The analysis produced a drone flight planning and image processing workflow that delivers accurate measurements of tree crops, including the tie point quality, densified point cloud density, and the measurement accuracy of height and plant projective cover derived from individual trees within a commercial avocado orchard. Results showed that flying along the hedgerow, at high solar elevation and with low image pitch angles improved the data quality. Optimal flying speed needs to be set to achieve the required forward overlap. The impacts of each image acquisition variable are discussed in detail and protocols for flight planning optimisation for three scenarios with different drone settings are suggested. Establishing protocols that deliver optimal image acquisitions for the collection of drone data over horticultural tree crops, will create greater confidence in the accuracy of subsequent algorithms and resultant maps of biophysical properties. Numéro de notice : A2020-044 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.12.006 Date de publication en ligne : 18/12/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.12.006 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94524
in ISPRS Journal of photogrammetry and remote sensing > vol 160 (February 2020) . - pp 83 - 96[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020021 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020023 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt