Détail de l'auteur
Auteur José Marcato Junior |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Line-based deep learning method for tree branch detection from digital images / Rodrigo L. S. Silva in International journal of applied Earth observation and geoinformation, vol 110 (June 2022)
[article]
Titre : Line-based deep learning method for tree branch detection from digital images Type de document : Article/Communication Auteurs : Rodrigo L. S. Silva, Auteur ; José Marcato Junior, Auteur ; Laisa Almeida, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102759 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] branche (arbre)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] données qualitatives
[Termes IGN] estimation quantitative
[Termes IGN] image à haute résolution
[Termes IGN] ligne (géométrie)
[Termes IGN] transformation de HoughRésumé : (auteur) Preventive maintenance of power lines, including cutting and pruning of tree branches, is essential to avoid interruptions in the energy supply. Automatic methods can support this risky task and also reduce time-consuming. Here, we propose a method in which the orientation and the grasping positions of tree branches are estimated. The proposed method firstly predicts the straight line (representing the tree branch extension) based on a convolutional neural network (CNN). Secondly, a Hough transform is applied to estimate the direction and position of the line. Finally, we estimate the grip point as the pixel point with the highest probability of belonging to the line. We generated a dataset based on internet searches and annotated 1868 images considering challenging scenarios with different tree branch shapes, capture devices, and environmental conditions. Ten-fold cross-validation was adopted, considering 90% for training and 10% for testing. We also assessed the method under corruptions (gaussian and shot) with different severity levels. The experimental analysis showed the effectiveness of the proposed method reporting F1-score of 96.78%. Our method outperformed state-of-the-art Deep Hough Transform (DHT) and Fully Convolutional Line Parsing (F-Clip). Numéro de notice : A2022-550 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102759 Date de publication en ligne : 09/05/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102759 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101153
in International journal of applied Earth observation and geoinformation > vol 110 (June 2022) . - n° 102759[article]A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery / Lucas Prado Osco in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
[article]
Titre : A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery Type de document : Article/Communication Auteurs : Lucas Prado Osco, Auteur ; Mauro Dos Santos de Arruda, Auteur ; José Marcato Junior, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 97 - 106 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] Brésil
[Termes IGN] carte de confiance
[Termes IGN] Citrus (genre)
[Termes IGN] détection d'arbres
[Termes IGN] géolocalisation
[Termes IGN] image captée par drone
[Termes IGN] image multibande
[Termes IGN] inventaire de la végétation
[Termes IGN] réseau neuronal convolutif
[Termes IGN] vergerRésumé : (Auteur) Visual inspection has been a common practice to determine the number of plants in orchards, which is a labor-intensive and time-consuming task. Deep learning algorithms have demonstrated great potential for counting plants on unmanned aerial vehicle (UAV)-borne sensor imagery. This paper presents a convolutional neural network (CNN) approach to address the challenge of estimating the number of citrus trees in highly dense orchards from UAV multispectral images. The method estimates a dense map with the confidence that a plant occurs in each pixel. A flight was conducted over an orchard of Valencia-orange trees planted in linear fashion, using a multispectral camera with four bands in green, red, red-edge and near-infrared. The approach was assessed considering the individual bands and their combinations. A total of 37,353 trees were adopted in point feature to evaluate the method. A variation of σ (0.5; 1.0 and 1.5) was used to generate different ground truth confidence maps. Different stages (T) were also used to refine the confidence map predicted. To evaluate the robustness of our method, we compared it with two state-of-the-art object detection CNN methods (Faster R-CNN and RetinaNet). The results show better performance with the combination of green, red and near-infrared bands, achieving a Mean Absolute Error (MAE), Mean Square Error (MSE), R2 and Normalized Root-Mean-Squared Error (NRMSE) of 2.28, 9.82, 0.96 and 0.05, respectively. This band combination, when adopting σ = 1 and a stage (T = 8), resulted in an R2, MAE, Precision, Recall and F1 of 0.97, 2.05, 0.95, 0.96 and 0.95, respectively. Our method outperforms significantly object detection methods for counting and geolocation. It was concluded that our CNN approach developed to estimate the number and geolocation of citrus trees in high-density orchards is satisfactory and is an effective strategy to replace the traditional visual inspection method to determine the number of plants in orchards trees. Numéro de notice : A2020-045 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.12.010 Date de publication en ligne : 18/12/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.12.010 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94525
in ISPRS Journal of photogrammetry and remote sensing > vol 160 (February 2020) . - pp 97 - 106[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020021 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020023 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt