Détail de l'auteur
Auteur Zvi Hochman |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Estimating wheat yields in Australia using climate records, satellite image time series and machine learning methods / Elisa Kamir in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
[article]
Titre : Estimating wheat yields in Australia using climate records, satellite image time series and machine learning methods Type de document : Article/Communication Auteurs : Elisa Kamir, Auteur ; François Waldner, Auteur ; Zvi Hochman, Auteur Année de publication : 2020 Article en page(s) : pp 124 - 135 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] Australie
[Termes IGN] blé (céréale)
[Termes IGN] carte agricole
[Termes IGN] climat
[Termes IGN] estimation de précision
[Termes IGN] fonction de base radiale
[Termes IGN] image satellite
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle non linéaire
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression
[Termes IGN] rendement agricole
[Termes IGN] série temporelle
[Termes IGN] variation saisonnièreRésumé : (Auteur) Closing the yield gap between actual and potential wheat yields in Australia is important to meet the growing global demand for food. The identification of hotspots of the yield gap, where the potential for improvement is the greatest, is a necessary step towards this goal. While crop growth models are well suited to quantify potential yields, they lack the ability to provide accurate large-scale estimates of actual yields, owing to the sheer quantity of data they require for parameterisation. In this context, we sought to provide accurate estimates of actual wheat yields across the Australian wheat belt based on machine-learning regression methods, climate records and satellite image time series. Out of nine base learners and two ensembles, support vector regression with radial basis function emerged as the single best learner (root mean square error of 0.55 t ha−1 and R2 of 0.77 at the pixel level). At national scale, this model explained 73% of the yield variability observed across statistical units. Benchmark approaches based on peak Normalised Difference Vegetation Index (NDVI) and on a harvest index were largely outperformed by the machine-learning regression models (R2 Numéro de notice : A2020-046 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.11.008 Date de publication en ligne : 20/12/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.11.008 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94556
in ISPRS Journal of photogrammetry and remote sensing > vol 160 (February 2020) . - pp 124 - 135[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020021 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020023 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt