Détail de l'auteur
Auteur Peng Wah Chee |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Three-dimensional photogrammetric mapping of cotton bolls in situ based on point cloud segmentation and clustering / Shangpeng Sun in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
[article]
Titre : Three-dimensional photogrammetric mapping of cotton bolls in situ based on point cloud segmentation and clustering Type de document : Article/Communication Auteurs : Shangpeng Sun, Auteur ; Changying Li, Auteur ; Peng Wah Chee, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 195 - 207 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] cartographie 3D
[Termes IGN] classification basée sur les régions
[Termes IGN] distribution spatiale
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de la végétation
[Termes IGN] gestion de production
[Termes IGN] Gossypium (genre)
[Termes IGN] phénologie
[Termes IGN] rendement agricole
[Termes IGN] segmentation d'image
[Termes IGN] semis de points
[Termes IGN] structure-from-motion
[Termes IGN] surveillance de la végétationRésumé : (Auteur) Three-dimensional high throughput plant phenotyping techniques provide an opportunity to measure plant organ-level traits which can be highly useful to plant breeders. The number and locations of cotton bolls, which are the fruit of cotton plants and an important component of fiber yield, are arguably among the most important phenotypic traits but are complex to quantify manually. Hence, there is a need for effective and efficient cotton boll phenotyping solutions to support breeding research and monitor the crop yield leading to better production management systems. We developed a novel methodology for 3D cotton boll mapping within a plot in situ. Point clouds were reconstructed from multi-view images using the structure from motion algorithm. The method used a region-based classification algorithm that successfully accounted for noise due to sunlight. The developed density-based clustering method could estimate boll counts for this situation, in which bolls were in direct contact with other bolls. By applying the method to point clouds from 30 plots of cotton plants, boll counts, boll volume and position data were derived. The average accuracy of boll counting was up to 90% and the R2 values between fiber yield and boll number, as well as fiber yield and boll volume were 0.87 and 0.66, respectively. The 3D boll spatial distribution could also be analyzed using this method. This method, which was low-cost and provided improved site-specific data on cotton bolls, can also be applied to other plant/fruit mapping analysis after some modification. Numéro de notice : A2020-048 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.12.011 Date de publication en ligne : 25/12/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.12.011 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94561
in ISPRS Journal of photogrammetry and remote sensing > vol 160 (February 2020) . - pp 195 - 207[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020021 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020023 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt