Détail de l'auteur
Auteur Atle Frenvik Sveen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Micro-tasking as a method for human assessment and quality control in a geospatial data import / Atle Frenvik Sveen in Cartography and Geographic Information Science, vol 47 n° 2 (February 2020)
[article]
Titre : Micro-tasking as a method for human assessment and quality control in a geospatial data import Type de document : Article/Communication Auteurs : Atle Frenvik Sveen, Auteur ; Anne Sofie Strom Erichsen, Auteur ; Terje Midtbo, Auteur Année de publication : 2020 Article en page(s) : pp 141 - 152 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] algorithme de filtrage
[Termes IGN] chevauchement
[Termes IGN] contrôle qualité
[Termes IGN] données localisées
[Termes IGN] données localisées des bénévoles
[Termes IGN] évaluation des données
[Termes IGN] import de données
[Termes IGN] OpenStreetMap
[Termes IGN] précision des données
[Termes IGN] production participativeRésumé : (auteur) Crowd-sourced geospatial data can often be enriched by importing open governmental datasets as long as they are up-to date and of good quality. Unfortunately, merging datasets is not straight forward. In the context of geospatial data, spatial overlaps pose a particular problem, as existing data may be overwritten when a naïve, automated import strategy is employed. For example: OpenStreetMap has imported over 100 open geospatial datasets, but the requirement for human assessment makes this a time-consuming process which requires experienced volunteers or training. In this paper, we propose a hybrid import workflow that combines algorithmic filtering with human assessment using the micro-tasking method. This enables human assessment without the need for complex tools or prior experience. Using an online experiment, we investigated how import speed and accuracy is affected by volunteer experience and partitioning of the micro-task. We conclude that micro-tasking is a viable method for massive quality assessment that does not require volunteers to have prior experience working with geospatial data. Numéro de notice : A2020-058 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2019.1659187 Date de publication en ligne : 16/09/2020 En ligne : https://doi.org/10.1080/15230406.2019.1659187 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94575
in Cartography and Geographic Information Science > vol 47 n° 2 (February 2020) . - pp 141 - 152[article]