Détail de l'auteur
Auteur Di Liu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Learning sequential slice representation with an attention-embedding network for 3D shape recognition and retrieval in MLS point clouds / Zhipeng Luo in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
[article]
Titre : Learning sequential slice representation with an attention-embedding network for 3D shape recognition and retrieval in MLS point clouds Type de document : Article/Communication Auteurs : Zhipeng Luo, Auteur ; Di Liu, Auteur ; Jonathan Li, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 147 - 163 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] balayage laser
[Termes IGN] données laser
[Termes IGN] données localisées 3D
[Termes IGN] graphe
[Termes IGN] reconnaissance de formes
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau routier
[Termes IGN] semis de points
[Termes IGN] télémétrie laser mobileRésumé : (Auteur) The representation of 3D data is the key issue for shape analysis. However, most of the existing representations suffer from high computational cost and structure information loss. This paper presents a novel sequential slice representation with an attention-embedding network, named RSSNet, for 3D point cloud recognition and retrieval in road environments. RSSNet has two main branches. Firstly, a sequential slice module is designed to map disordered 3D point clouds to ordered sequence of shallow feature vectors. A gated recurrent unit (GRU) module is applied to encode the spatial and content information of these sequential vectors. The second branch consists of a key-point based graph convolution network (GCN) with an embedding attention strategy to fuse the sequential and global features to refine the structure discriminability. Three datasets were used to evaluate the proposed method, one acquired by our mobile laser scanning (MLS) system and two public datasets (KITTI and Sydney Urban Objects). Experimental results indicated that the proposed method achieved better performance than recognition and retrieval state-of-the-art methods. RSSNet provided recognition rates of 98.08%, 95.77% and 70.83% for the above three datasets, respectively. For the retrieval task, RSSNet obtained excellent mAP values of 95.56%, 87.16% and 69.99% on three datasets, respectively. Numéro de notice : A2020-064 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.01.003 Date de publication en ligne : 22/01/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.01.003 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94582
in ISPRS Journal of photogrammetry and remote sensing > vol 161 (March 2020) . - pp 147 - 163[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020031 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020033 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt