Détail de l'auteur
Auteur Ruchan Dong |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Sig-NMS-based faster R-CNN combining transfer learning for small target detection in VHR optical remote sensing imagery / Ruchan Dong in IEEE Transactions on geoscience and remote sensing, vol 57 n° 11 (November 2019)
[article]
Titre : Sig-NMS-based faster R-CNN combining transfer learning for small target detection in VHR optical remote sensing imagery Type de document : Article/Communication Auteurs : Ruchan Dong, Auteur ; Dazhuan Xu, Auteur ; Jin Zhao, Auteur ; Licheng Jiao, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 8534 - 8545 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal
[Termes IGN] détection d'objet
[Termes IGN] détection de cible
[Termes IGN] image à très haute résolution
[Termes IGN] régression
[Termes IGN] zone d'intérêtRésumé : (auteur) Small target detection is a challenging task in veryhigh-resolution (VHR) optical remote sensing imagery, because small targets occupy a minuscule number of pixels and are easily disturbed by backgrounds or occluded by others. Although current convolutional neural network (CNN)-based approaches perform well when detecting normal objects, they are barely suitable for detecting small ones. Two practical problems stand in their way. First, current CNN-based approaches are not specifically designed for the minuscule size of small targets (~15 or ~10 pixels in extent). Second, no well-established data sets include labeled small targets and establishing one from scratch is labor-intensive and time-consuming. To address these two issues, we propose an approach that combines Sig-NMS-based Faster R-CNN with transfer learning. Sig-NMS replaces traditional non-maximum suppression (NMS) in the stage of region proposal network and decreases the possibility of missing small targets. Transfer learning can effectively label remote sensing images by automatically annotating both object classes and object locations. We conduct an experiment on three data sets of VHR optical remote sensing images, RSOD, LEVIR, and NWPU VHR-10, to validate our approach. The results demonstrate that the proposed approach can effectively detect small targets in the VHR optical remote sensing images of about 10 × 10 pixels and automatically label small targets as well. In addition, our method presents better mean average precisions than other state-of-the-art methods: 1.5% higher when performing on the RSOD data set, 17.8% higher on the LEVIR data set, and 3.8% higher on NWPU VHR-10. Numéro de notice : A2019-595 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2921396 Date de publication en ligne : 15/07/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2921396 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94587
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 11 (November 2019) . - pp 8534 - 8545[article]