Détail de l'auteur
Auteur Tong Fei Liu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Novel adaptive histogram trend similarity approach for land cover change detection by using bitemporal very-high-resolution remote sensing images / Zhi Yong Lv in IEEE Transactions on geoscience and remote sensing, vol 57 n° 12 (December 2019)
[article]
Titre : Novel adaptive histogram trend similarity approach for land cover change detection by using bitemporal very-high-resolution remote sensing images Type de document : Article/Communication Auteurs : Zhi Yong Lv, Auteur ; Tong Fei Liu, Auteur ; Zhang Penglin, Auteur ; Jon Atli Benediktsson, Auteur ; et al., Auteur Année de publication : 2019 Article en page(s) : pp 9554 - 9574 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse diachronique
[Termes IGN] changement d'occupation du sol
[Termes IGN] Chine
[Termes IGN] classification pixellaire
[Termes IGN] détection de changement
[Termes IGN] histogramme
[Termes IGN] Hong-Kong
[Termes IGN] image à très haute résolution
[Termes IGN] phénologie
[Termes IGN] seuillage de pointsRésumé : (auteur) Detecting land cover change through very-high-resolution (VHR) remote sensing images is helpful in supporting urban sustainable development, natural disaster evaluation, and environmental assessment. However, the intraclass spectral variance in VHR remote sensing images is usually larger than that of median-low remote sensing images. Furthermore, the bitemporal images are usually acquired under different atmospheric conditions, sun height, soil moisture, and other factors. Consequently, in practical applications, many pseudo changes are presented in the detected map. In this paper, an adaptive histogram trend (AHT) similarity approach is promoted to quantitatively measure the magnitude between the corresponding pixels in bitemporal images in terms of change semantic. In the proposed approach, to reduce the phenological effect on the bitemporal images of land cover change detection (LCCD), we first define the quantitative description of AHT. Second, the change magnitudes between pairwise pixels are quantitatively measured by an improved bin-to-bin (B2B) distance between the corresponding AHTs. Then, the change magnitudes between two entire bitemporal images are measured AHT-by-AHT. Finally, binary threshold methods, such as the Otsu method or the double-window flexible pace search (DFPS) method, are used to divide the change magnitude image into binary change detection maps and obtain the final change detection map. The performance of the AHT-based LCCD approach is verified by four pairs of VHR remote-sensing images that correspond to two types of real land cover change cases. The detected results based on the four pairs of bitemporal VHR images outperformed the compared state-of-the-art LCCD methods. Numéro de notice : A2019-599 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2927659 Date de publication en ligne : 01/08/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2927659 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94593
in IEEE Transactions on geoscience and remote sensing > vol 57 n° 12 (December 2019) . - pp 9554 - 9574[article]