Détail de l'auteur
Auteur Bo Yang |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A spatio-temporal method for crime prediction using historical crime data and transitional zones identified from nightlight imagery / Bo Yang in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
[article]
Titre : A spatio-temporal method for crime prediction using historical crime data and transitional zones identified from nightlight imagery Type de document : Article/Communication Auteurs : Bo Yang, Auteur ; Lin Liu, Auteur ; Minxuan Lan, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1740 - 1764 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] coefficient de corrélation
[Termes IGN] criminalité
[Termes IGN] données spatiotemporelles
[Termes IGN] géostatistique
[Termes IGN] historique des données
[Termes IGN] image NPP-VIIRS
[Termes IGN] krigeage
[Termes IGN] modèle dynamique
[Termes IGN] nuit
[Termes IGN] Ohio (Etats-Unis)
[Termes IGN] prédiction
[Termes IGN] prévention des risques
[Termes IGN] prise de vue nocturne
[Termes IGN] test statistique
[Termes IGN] zone urbaineRésumé : (auteur) Accurate crime prediction can help allocate police resources for crime reduction and prevention. There are two popular approaches to predict criminal activities: one is based on historical crime, and the other is based on environmental variables correlated with criminal patterns. Previous research on geo-statistical modeling mainly considered one type of data in space-time domain, and few sought to blend multi-source data. In this research, we proposed a spatio-temporal Cokriging algorithm to integrate historical crime data and urban transitional zones for more accurate crime prediction. Time-series historical crime data were used as the primary variable, while urban transitional zones identified from the VIIRS nightlight imagery were used as the secondary co-variable. The algorithm has been applied to predict weekly-based street crime and hotspots in Cincinnati, Ohio. Statistical tests and Predictive Accuracy Index (PAI) and Predictive Efficiency Index (PEI) tests were used to validate predictions in comparison with those of the control group without using the co-variable. The validation results demonstrate that the proposed algorithm with historical crime data and urban transitional zones increased the correlation coefficient by 5.4% for weekdays and by 12.3% for weekends in statistical tests, and gained higher hit rates measured by PAI/PEI in the hotspots test. Numéro de notice : A2020-475 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1737701 Date de publication en ligne : 13/03/2020 En ligne : https://doi.org/10.1080/13658816.2020.1737701 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95622
in International journal of geographical information science IJGIS > vol 34 n° 9 (September 2020) . - pp 1740 - 1764[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2020091 RAB Revue Centre de documentation En réserve L003 Disponible Global iterative geometric calibration of a linear optical satellite based on sparse GCPs / Yingdong Pi in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
[article]
Titre : Global iterative geometric calibration of a linear optical satellite based on sparse GCPs Type de document : Article/Communication Auteurs : Yingdong Pi, Auteur ; Xin Li, Auteur ; Bo Yang, Auteur Année de publication : 2020 Article en page(s) : pp 436 - 446 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] élément d'orientation interne
[Termes IGN] erreur systématique
[Termes IGN] étalonnage géométrique
[Termes IGN] image satellite
[Termes IGN] image SPOT-HRV
[Termes IGN] itération
[Termes IGN] longueur focale
[Termes IGN] modèle numérique de surface
[Termes IGN] point d'appuiRésumé : (auteur) Independent methods for geometric calibration (GC) have become an important research direction in the field of optical satellite technology. The main purpose of this research is to eliminate dependence on ground calibration sites using relative constraints between images. Based on a systematic analysis of these relative constraints, we found that it was difficult, if not impossible, to completely eliminate ground constraints, although the number of ground control points (GCPs) required can be greatly reduced. To achieve practical GC with high accuracy and low cost, we proposed a new method to compensate for systematic errors in linear optical satellite data acquisition using only the relative constraints between two overlapped images, namely, the corresponding elevation constraints and sparse GCPs. We first demonstrated the feasibility of GC with relative constraints and established an optimized GC model suitable for these relative constraints. We then presented a global iterative method to eliminate inaccuracies in internal calibration caused by the different distributions of GCPs within two images. The nadir (NAD) linear camera on board the Zi-Yuan 3 (ZY-3) satellite was used to evaluate the feasibility of the presented GC method; the results indicated that the present method effectively compensated for systematic errors. Thus, this article demonstrated the feasibility of GC without calibration sites. Numéro de notice : A2020-075 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2936891 Date de publication en ligne : 12/09/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2936891 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94607
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 1 (January 2020) . - pp 436 - 446[article]