Détail de l'auteur
Auteur Xiaobing Zhou |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Identification of alpine glaciers in the central Himalayas using fully polarimetric L-Band SAR data / Guo-Hui Yao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
[article]
Titre : Identification of alpine glaciers in the central Himalayas using fully polarimetric L-Band SAR data Type de document : Article/Communication Auteurs : Guo-Hui Yao, Auteur ; Chang-qing Ke, Auteur ; Xiaobing Zhou, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 691 - 703 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] analyse multiéchelle
[Termes IGN] bande L
[Termes IGN] classification orientée objet
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données polarimétriques
[Termes IGN] échantillonnage
[Termes IGN] glacier
[Termes IGN] Himalaya
[Termes IGN] image ALOS-PALSAR
[Termes IGN] image Landsat-OLI
[Termes IGN] image radar moirée
[Termes IGN] interferométrie différentielle
[Termes IGN] matrice de covariance
[Termes IGN] précision de la classification
[Termes IGN] segmentationRésumé : (auteur) To study the applicability of full polarimetric synthetic aperture radar (SAR) data to identify alpine glaciers in the central Himalayas, six polarimetric decomposition methods were used to obtain 20 polarimetric characteristic parameters based on the Advanced Land Observing Satellite 2 (ALOS-2) Phased Array type L-band SAR (PALSAR) data. Object-oriented multiscale segmentation was performed on a Landsat 8 Operational Land Imager (OLI) image prior to classification, and the vector boundaries of different types of training samples were selected from the segmented results. We performed a support vector machine (SVM)-based classification on the characteristic parameters from each polarimetric decomposition. All 20 parameters were then screened and combined according to different requirements: the degree of separability of different types of training samples and the type of scattering mechanisms. The results show that the classification accuracy of the incoherent decomposition characteristics based on the covariance matrix is the best, reaching 87%, and it can exceed 91% after adding the local incidence angle to the suite of classifiers. Eventually, more than 93% accuracy was achieved using a combination of multiple polarimetric parameters, which reduced the misclassification between bare ice and rock. We also analyzed the use of controlling factors on the accuracy of alpine glacier identification and found that the polarimetric information and aspect of the glacier surface are the most important factors. The former is the main basis for identification but the latter will confuse the feature distributions of different categories and cause misclassification. Numéro de notice : A2020-077 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2939430 Date de publication en ligne : 25/09/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2939430 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94613
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 1 (January 2020) . - pp 691 - 703[article]