Détail de l'auteur
Auteur Yuanheng Sun |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Red-edge band vegetation indices for leaf area index estimation from Sentinel-2/MSI imagery / Yuanheng Sun in IEEE Transactions on geoscience and remote sensing, vol 58 n° 2 (February 2020)
[article]
Titre : Red-edge band vegetation indices for leaf area index estimation from Sentinel-2/MSI imagery Type de document : Article/Communication Auteurs : Yuanheng Sun, Auteur ; Qiming Qin, Auteur ; Huazhong Ren, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 826 - 840 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] bande rouge
[Termes IGN] canopée
[Termes IGN] Chine
[Termes IGN] image multibande
[Termes IGN] image proche infrarouge
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] indice foliaire
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] teneur en chlorophylle des feuillesRésumé : (auteur) The estimation of leaf area index (LAI) from optical remotely sensed data based on vegetation indices (VIs) is a quick and practical approach to acquire LAI over vast areas. Reflectance in the red-edge bands is sensitive to vegetation status, and its information is thought to be useful in agricultural applications. Based on three red-edge band observations (represented as RE1, RE2, and RE3 for bands 5–7) from the Multispectral Instrument (MSI) onboard the Sentinel-2 satellite, this article aims to investigate the feasibility and performance of using red-edge bands for LAI estimates with the VI method and ground-measured LAI data sets. Sensitivity analysis from PROSAIL simulations revealed that RE1 is mainly affected by the influence of the leaf chlorophyll content, and this uncertainty should not be ignored during LAI estimation. For the normalized difference vegetation index (NDVI), modified simple ratio (MSR), chlorophyll index (CI), and wide dynamic range vegetation index (WDRVI), the optimal combination of Sentinel-2 bands for LAI estimation was RE2 and RE3, with a minimum root-mean-square error (RMSE) of 0.75. Four 3-band red-edge VIs were proposed to exploit the full content of the red-edge bands of Sentinel-2, and their performance in LAI estimation improved slightly. However, both 2-band red-edge VIs and 3-band red-edge VIs remained slightly saturated at high LAI levels; therefore, a segmental estimation with a threshold was suggested for large LAIs. The results indicate that the optimal 2-band red-edge VIs and proposed 3-band red-edge VIs are effective tools for crop LAI estimation in multiple-growth stages with Sentinel-2 MSI images. Numéro de notice : A2020-069 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2940826 Date de publication en ligne : 27/09/2019 En ligne : http://doi.org/10.1109/TGRS.2019.2940826 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94615
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 2 (February 2020) . - pp 826 - 840[article]