Détail de l'auteur
Auteur Elahe S. Abdolkarimi |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A low-cost integrated MEMS-based INS/GPS vehicle navigation system with challenging conditions based on an optimized IT2FNN in occluded environments / Elahe S. Abdolkarimi in GPS solutions, Vol 24 n° 4 (October 2020)
[article]
Titre : A low-cost integrated MEMS-based INS/GPS vehicle navigation system with challenging conditions based on an optimized IT2FNN in occluded environments Type de document : Article/Communication Auteurs : Elahe S. Abdolkarimi, Auteur ; Mohammad-Reza Mosavi, Auteur Année de publication : 2020 Article en page(s) : 19 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie spatiale
[Termes IGN] centrale inertielle
[Termes IGN] classification floue
[Termes IGN] classification par réseau neuronal
[Termes IGN] filtrage du bruit
[Termes IGN] filtre de Kalman
[Termes IGN] GPS-INS
[Termes IGN] microsystème électromécanique
[Termes IGN] modèle d'incertitude
[Termes IGN] rapport signal sur bruit
[Termes IGN] transformation en ondelettesRésumé : (auteur) Integration of both global positioning system (GPS) and inertial navigation system (INS) assures a continuous and accurate navigation system. In low-cost low-precision micro-electromechanical system (MEMS)-based INS/GPS integration navigation systems, one of the major concerns is high-level stochastic noise and uncertainties existing in INS sensors and complex model of real noisy data. In such uncertainty-oriented environments, an intelligence structure with extra degrees of freedom which can handle and model a high-level of uncertainties in INS sensors, and an efficient denoising technique as a precursor to the intelligence structure can be efficient solutions. Our approach to these problems is taken in different steps. First, a denoising technique based on empirical mode decomposition (EMD) is used to provide more accurate INS sensor outputs and better generalization ability. Second, an optimized interval type-2 fuzzy neural network is used to model and handle a high-level of uncertainties efficiently and estimate the positioning error of INS sensors when GPS signals are blocked, and still meet both accuracy maximization and complexity minimization. Fast learning and convergence of the algorithm and less computational complexity can be achieved by using an extended Kalman filter in the learning of algorithm and an accurate and simple type-reduction, respectively, which can be utilized in real-time applications with significant performance. The results of EMD-based denoising technique, as a preprocessing phase, verify superior performance in comparison with the discrete wavelet transform denoising method in the signal-to-noise ratio improvement for raw and noisy signals of INS sensors. To verify the effectiveness of our proposed model, we applied challenging conditions consisting of low-cost low-precision inertial sensors based on MEMS technology, long-term outages of GPS satellites, a high-speed experimental test vehicle and noisy real-world data in the real-time flight experiments. The achieved experimental accuracies are compared with the results that we have achieved in other methods, and our proposed method verifies significant improvements. Numéro de notice : A2020-521 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-01023-9 Date de publication en ligne : 18/08/2020 En ligne : https://doi.org/10.1007/s10291-020-01023-9 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95692
in GPS solutions > Vol 24 n° 4 (October 2020) . - 19 p.[article]Wavelet-adaptive neural subtractive clustering fuzzy inference system to enhance low-cost and high-speed INS/GPS navigation system / Elahe S. Abdolkarimi in GPS solutions, vol 24 n° 2 (April 2020)
[article]
Titre : Wavelet-adaptive neural subtractive clustering fuzzy inference system to enhance low-cost and high-speed INS/GPS navigation system Type de document : Article/Communication Auteurs : Elahe S. Abdolkarimi, Auteur ; Mohammad-Reza Mosavi, Auteur Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] centrale inertielle
[Termes IGN] coût
[Termes IGN] filtre de Kalman
[Termes IGN] GPS-INS
[Termes IGN] imprécision des données
[Termes IGN] incertitude des données
[Termes IGN] Inférence floue
[Termes IGN] précision du positionnement
[Termes IGN] rapport signal sur bruit
[Termes IGN] transformation en ondelettes
[Termes IGN] vitesse de déplacementRésumé : (auteur) The combined navigation system consisting of Global Positioning System (GPS) and Inertial Navigation System in a complementary mode assures an accurate, reliable, and continuous positioning capability in the navigation system. Because of problems such as dealing with a low-cost MEMS-based inertial sensors having a high level of uncertainty and imprecision, stochastic noise, a high-speed vehicle, high noisy real data, and long-term GPS signal outage during the real-time flight test, the advantage is taken for some approaches in different steps: (1) utilizing discrete wavelet transform technique to enhance the signal-to-noise ratio in raw and noisy inertial sensor signals and attenuate high-frequency noise as a preprocessing phase to prepare more accurate data for the proposed model and (2) employing adaptive neural subtractive clustering fuzzy inference system (ANSCFIS) which combines and extracts the best feature of adaptive neuro-fuzzy inference system (ANFIS), and the subtractive clustering algorithm with fewer rules than the ANFIS method, aiming to improve a more efficient, accurate, and especially a faster method which enhances the prediction accuracy and speeds up the positioning system. The achieved accuracies for the proposed model are discussed and compared with the extended Kalman filter (EKF), ANFIS, and ANSCFIS which are implemented and tested experimentally using a high-speed vehicle in three GPS blockages. The proposed model shows considerable improvements in high-speed navigation using low-cost MEMS-based inertial sensors in case of long-term GPS blockage. Numéro de notice : A2020-084 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10291-020-0951-y Date de publication en ligne : 11/01/2020 En ligne : https://doi.org/10.1007/s10291-020-0951-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94654
in GPS solutions > vol 24 n° 2 (April 2020)[article]