Détail de l'auteur
Auteur Ananya Gupta |
Documents disponibles écrits par cet auteur (2)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Tree annotations in LiDAR data using point densities and convolutional neural networks / Ananya Gupta in IEEE Transactions on geoscience and remote sensing, vol 58 n° 2 (February 2020)
[article]
Titre : Tree annotations in LiDAR data using point densities and convolutional neural networks Type de document : Article/Communication Auteurs : Ananya Gupta, Auteur ; Jonathan Byrne, Auteur ; David Moloney, Auteur Année de publication : 2020 Article en page(s) : pp 971 - 981 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] Dublin (Irlande ; ville)
[Termes IGN] extraction d'arbres
[Termes IGN] image spectrale
[Termes IGN] Montréal (Québec)
[Termes IGN] segmentation
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] voxel
[Termes IGN] zone urbaineRésumé : (auteur) LiDAR provides highly accurate 3-D point clouds. However, data need to be manually labeled in order to provide subsequent useful information. Manual annotation of such data is time-consuming, tedious, and error prone, and hence, in this article, we present three automatic methods for annotating trees in LiDAR data. The first method requires high-density point clouds and uses certain LiDAR data attributes for the purpose of tree identification, achieving almost 90% accuracy. The second method uses a voxel-based 3-D convolutional neural network on low-density LiDAR data sets and is able to identify most large trees accurately but struggles with smaller ones due to the voxelization process. The third method is a scaled version of the PointNet++ method and works directly on outdoor point clouds and achieves an F score of 82.1% on the ISPRS benchmark data set, comparable to the state-of-the-art methods but with increased efficiency. Numéro de notice : A2020-095 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2942201 Date de publication en ligne : 11/10/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2942201 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94658
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 2 (February 2020) . - pp 971 - 981[article]
Titre : Deep learning for semantic feature extraction in aerial imagery Type de document : Thèse/HDR Auteurs : Ananya Gupta, Auteur ; Hujun Yin, Directeur de thèse ; Simon Watson, Directeur de thèse Editeur : Manchester [Royaume-Uni] : University of Manchester Année de publication : 2020 Importance : 151 p. Format : 21 x 30 cm Note générale : bibliographie
A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the faculty of Science and engineeringLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage profond
[Termes IGN] cartographie d'urgence
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] Dublin (Irlande ; ville)
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image à très haute résolution
[Termes IGN] image aérienne
[Termes IGN] image multitemporelle
[Termes IGN] OpenStreetMap
[Termes IGN] réseau routier
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] voxelIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Remote sensing provides image and LiDAR data that can be useful for a number of tasks such as disaster mapping and surveying. Deep learning (DL) has been shown to provide good results in extracting knowledge from input data sources by the means of learning intermediate representation features. However, popular DL methods require large scaled datasets for training which are costly and time-consuming to obtain. This thesis investigates semantic knowledge extraction from remote sensing data using DL methods in regimes with limited labelled data. Firstly, semantic segmentation methods are compared and analysed on the task of aerial image segmentation. It is shown that pretraining on ImageNet improves the segmentation results despite the domain shift between ImageNet images and aerial images. A framework for mapping road networks in disaster struck areas is proposed. It uses pre and post disaster imagery and labels from OpenStreetMaps (OSM), forgoing the need for costly manually labelled data. Graph-based methods are used to update the pre-existing road maps from OSM. Experiments on a disaster dataset from Palu, Indonesia show the efficacy of the proposed method. A method for semantic feature extraction from aerial imagery is proposed which is shown to work well for multitemporal high resolution image registration. These feature are able to deal with temporal variations caused by seasonal changes. Methods for tree identification in LiDAR data have been proposed to overcome the need for manually labelled data. The first method works on high density point clouds and uses certain LiDAR data attributes for tree identification, achieving almost 90% accuracy. The second uses a voxel based 3D Convolutional Neural Network on low density LiDAR datasets and is able to identify most large trees. The third method is a scaled version of PointNet++ and achieves an F_score of 82.1 on the ISPRS benchmark, comparable to the state of the art methods but with increased efficiency. Finally, saliency methods used for explainability in image analysis are extended to work on 3D point clouds and voxel-based networks to help aid explainability in this area. It is shown that edge and corner features are deemed important by these networks for classification. These features are also demonstrated to be inherently sparse and pruned easily. Note de contenu : 1- Introduction
2- Background and Literature Review
3- Aerial Image Segmentation with Open Data
4- Aerial Image Registration
5- Tree Annotations in LiDAR Data
6- 3D Point Cloud Feature Explanations
7- Conclusions and Future WorkNuméro de notice : 28302 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse étrangère Note de thèse : PhD Thesis : Science and Engineering : University of Manchester : 2020 DOI : sans En ligne : https://www.research.manchester.ac.uk/portal/files/184627877/FULL_TEXT.PDF Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98051