Détail de l'auteur
Auteur Giovanni Nico |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Mapping precipitable water vapor time series from Sentinel-1 interferometric SAR / Pedro Mateus in IEEE Transactions on geoscience and remote sensing, vol 58 n° 2 (February 2020)
[article]
Titre : Mapping precipitable water vapor time series from Sentinel-1 interferometric SAR Type de document : Article/Communication Auteurs : Pedro Mateus, Auteur ; João Catalão, Auteur ; Giovanni Nico, Auteur ; Pedro Benevides, Auteur Année de publication : 2020 Article en page(s) : pp 1373 - 1379 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] Appalaches
[Termes IGN] cartographie
[Termes IGN] données GNSS
[Termes IGN] image Sentinel-SAR
[Termes IGN] interferométrie différentielle
[Termes IGN] itération
[Termes IGN] méthode des moindres carrés
[Termes IGN] modèle atmosphérique
[Termes IGN] optimisation (mathématiques)
[Termes IGN] phase GNSS
[Termes IGN] prévision météorologique
[Termes IGN] série temporelle
[Termes IGN] vapeur d'eauRésumé : (auteur) In this article, a methodology to retrieve the precipitable water vapor (PWV) from a differential interferometric time series is presented. We used external data provided by atmospheric weather models (e.g., ERA-Interim reanalysis) to constrain the initial state and by Global Navigation Satellite System (GNSS) to phase ambiguities elimination introduced by phase unwrapping algorithm. An iterative least-square is then used to solve the optimization problem. We applied the presented methodology to two time series of differential PWV maps estimated from synthetic aperture radar (SAR) images acquired by the Sentinel-1A, over the southwest part of the Appalachian Mountains (USA). The results were validated using an independent GNSS data set and also compared with atmospheric weather prediction data. The GNSS PWV observations show a strong correlation with the estimated PWV maps with a root-mean-square error less than 1 mm. These results are very encouraging, particularly for the meteorology community, providing crucial information to assimilate into numerical weather models and potentially improve the forecasts. Numéro de notice : A2020-098 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2946077 Date de publication en ligne : 28/10/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2946077 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94672
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 2 (February 2020) . - pp 1373 - 1379[article]