Détail de l'auteur
Auteur Chia-Yu Hsu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Automated terrain feature identification from remote sensing imagery: a deep learning approach / Wenwen Li in International journal of geographical information science IJGIS, vol 34 n° 4 (April 2020)
[article]
Titre : Automated terrain feature identification from remote sensing imagery: a deep learning approach Type de document : Article/Communication Auteurs : Wenwen Li, Auteur ; Chia-Yu Hsu, Auteur Année de publication : 2020 Article en page(s) : pp 637 - 660 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse du paysage
[Termes IGN] apprentissage profond
[Termes IGN] base de données d'images
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] compréhension de l'image
[Termes IGN] détection automatique
[Termes IGN] détection d'objet
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] intelligence artificielleRésumé : (auteur) Terrain feature detection is a fundamental task in terrain analysis and landscape scene interpretation. Discovering where a specific feature (i.e. sand dune, crater, etc.) is located and how it evolves over time is essential for understanding landform processes and their impacts on the environment, ecosystem, and human population. Traditional induction-based approaches are challenged by their inefficiency for generalizing diverse and complex terrain features as well as their performance for scalable processing of the massive geospatial data available. This paper presents a new deep learning (DL) approach to support automatic detection of terrain features from remotely sensed images. The novelty of this work lies in: (1) a terrain feature database containing 12,000 remotely sensed images (1,000 original images and 11,000 derived images from data augmentation) that supports data-driven model training and new discovery; (2) a DL-based object detection network empowered by ensemble learning and deep and deeper convolutional neural networks to achieve high-accuracy object detection; and (3) fine-tuning the model’s characteristics and behaviors to identify the best combination of hyperparameters and other network factors. The introduction of DL into geospatial applications is expected to contribute significantly to intelligent terrain analysis, landscape scene interpretation, and the maturation of spatial data science. Numéro de notice : A2020-108 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1542697 Date de publication en ligne : 07/11/2018 En ligne : https://doi.org/10.1080/13658816.2018.1542697 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94708
in International journal of geographical information science IJGIS > vol 34 n° 4 (April 2020) . - pp 637 - 660[article]