Détail de l'auteur
Auteur Stephen Law |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Street-Frontage-Net: urban image classification using deep convolutional neural networks / Stephen Law in International journal of geographical information science IJGIS, vol 34 n° 4 (April 2020)
[article]
Titre : Street-Frontage-Net: urban image classification using deep convolutional neural networks Type de document : Article/Communication Auteurs : Stephen Law, Auteur ; Chanuki Illushka Seresinhe, Auteur ; Yao Shen, Auteur Année de publication : 2020 Article en page(s) : pp 681- 707 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] espace public
[Termes IGN] évaluation foncière
[Termes IGN] extraction de données
[Termes IGN] façade
[Termes IGN] habitat urbain
[Termes IGN] image Streetview
[Termes IGN] immobilier (secteur)
[Termes IGN] information géographique
[Termes IGN] Londres
[Termes IGN] matrice de confusion
[Termes IGN] Paris (75)
[Termes IGN] paysage urbain
[Termes IGN] urbanisme
[Termes IGN] vision par ordinateurRésumé : (auteur) Quantifying aspects of urban design on a massive scale is crucial to help develop a deeper understanding of urban designs elements that contribute to the success of a public space. In this study, we further develop the Street-Frontage-Net (SFN), a convolutional neural network (CNN) that can successfully evaluate the quality of street frontage as either being active (frontage containing windows and doors) or blank (frontage containing walls, fences and garages). Small-scale studies have indicated that the more active the frontage, the livelier and safer a street feels. However, collecting the city-level data necessary to evaluate street frontage quality is costly. The SFN model uses a deep CNN to classify the frontage of a street. This study expands on the previous research via five experiments. We find robust results in classifying frontage quality for an out-of-sample test set that achieves an accuracy of up to 92.0%. We also find active frontages in a neighbourhood has a significant link with increased house prices. Lastly, we find that active frontage is associated with more scenicness compared to blank frontage. While further research is needed, the results indicate the great potential for using deep learning methods in geographic information extraction and urban design. Numéro de notice : A2020-110 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1555832 Date de publication en ligne : 26/12/2018 En ligne : https://doi.org/10.1080/13658816.2018.1555832 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94712
in International journal of geographical information science IJGIS > vol 34 n° 4 (April 2020) . - pp 681- 707[article]